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Abstract—In this paper, we consider the problem of Distributed
Multi-sensor Multi-target Tracking (DMMT) for networked fu-
sion systems. Many existing approaches for DMMT use multiple
hypothesis tracking and track-to-track fusion. However, there are
two difficulties with these approaches. First, the computational
costs of these algorithms can scale factorially with the number
of hypotheses. Second, consistent optimal fusion, which does not
double count information, can only be guaranteed for highly
constrained network architectures which largely undermine the
benefits of distributed fusion.

In this paper, we develop a consistent approach for DMMT
by combining a generalised version of Covariance Intersection,
based on Exponential Mixture Densities (EMDs), with Random
Finite Sets (RFS). We first derive explicit formulae for the
use of EMDs with RFSs. From this, we develop expressions
for the probability hypothesis density filters. This approach
supports DMMT in arbitrary network topologies through local
communications and computations. We implement this approach
using Sequential Monte Carlo techniques and demonstrate its
performance in simulations.

Index Terms—Multi-object filtering, PHD, CPHD, multi-sensor
fusion, distributed fusion, exponential mixture density, covariance
intersection, multi-sensor multi-target tracking, wireless sensor
networks.

I. INTRODUCTION

BECAUSE of its practical importance, Distributed Multi-

sensor Multi-target Tracking (DMMT) has become in-

creasingly important. In applications that range from traffic

monitoring to battlefield surveillance, networks of multiple

sensing systems are used to track the trajectories of multiple

targets over time. Scalability, flexibility, robustness and fault-

tolerance are often demanded. Therefore, rather than have cen-

tralised fusion in which there is a single point of failure, there

is a great deal of interest in algorithms and techniques that

can fuse information throughout the entire network, leading

to DMMT. However, there two difficult challenges that must

be overcome: multi-target tracking and distributed information

fusion.

The first challenge, multi-target tracking when the number

of targets is unknown, is widely recognised to be extremely
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difficult [1]. Perhaps the first work in the area was Reid’s pio-

neering work in Multiple Hypothesis Tracking (MHT) [2]. The

idea underlying MHT is to enumerate all the hypotheses that

describe all potential evolutions of targets and all possible as-

sociations of measurements with targets. However, the number

of hypotheses grows factorially over time. To overcome these

difficulties, numerous algorithms have been proposed [3].

Many approaches use a variety of track pruning, in which

only a fixed number of most likely hypotheses are maintained.

Recently, there has been a growing interest in reversible data

association methods, in which association decisions can be

revised as more information becomes available. However,

because of the computational complexity typically only a

single estimate over the association decisions — typically the

maximum a posteriori one — is maintained [4].

The second challenge is to fuse the information from

different fusion systems together in a consistent manner. In

principle, this can be achieved by maintaining the marginal and

joint probabilities of the distributions in the different fusion

systems [5]. However, unless the network is synchronous

and tree-connected, these quantities can only be computed

if an oracle continuously monitors the entire state of the

network [6]. This requirement undermines the potential ad-

vantages of flexibility, scalability and robustness of distributed

systems.

Existing solutions for DMMT combine both techniques

together in an unmodified fashion [5]. Multi-target tracking

algorithms are run on each fusion system separately and yield

a set of tracks. Track-to-track fusion algorithms are used

to construct associations between the different tracks in the

different sensing systems. Once tracks have been associated,

the state from one track is fused with that of another using

a distributed fusion scheme. However, these methods suffer

from the scalability and fragility of MHT, and the limitations

imposed by optimal distributed fusion architectures.

In this paper, we propose an approach to DMMT which ad-

dresses both of the aforementioned challenges. Our approach is

to generalise the formulation of a suboptimal distributed fusion

algorithm known as Covariance Intersection (CI) developed by

Uhlmann [7] within the multi-object probabilistic framework

developed by Mahler [8]. Mahler proposed a generalisation of

CI based on Exponential Mixture Densities (EMDs) of random

finite set (RFS) distributions [9]. In this work, we derive

the forms of EMDs and develop algorithms for distributed

multi-object filtering. Preliminary mathematical results on RFS

EMDs can be found in [10] and an implementation strategy

is presented in [11]. Selection of the weight parameter is

considered in [12]. In this paper, we provide a full account of
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Fig. 1. Illustrative case: Three sensing system nodes S1, S2 and S3 track
common targets. Each node measures the target state and exchanges its state
estimate with the other nodes.

our distributed multi-object filtering strategy with EMD fusion.

The structure of this paper is as follows: In Section II

we present the problem statement and introduce the RFS

models for both the multi-target state and sensor observations.

An overview of multi-object tracking using RFSs, distributed

fusion and the CI approach is given in Section III. Section IV

describes our approach for DMMT. We first analytically con-

sider the impact of the EMD on the RFS and derive closed

form solutions. We then show how, from this form, a modified

version of the PHD filter can be derived. The difficult issue

of calculating the weighting parameters is also considered

and a scheme based on Rényi divergence is proposed. In

Section V, we introduce Monte Carlo methods for realising

our EMD fusion approach and present a pseudo-code of the

fusion algorithm. The performance of the approach is analysed

in a distributed multi-target tracking example in Section VI.

Then, we conclude in Section VII.

II. PROBLEM STATEMENT

Consider the scenario illustrated in Figure 1. An environ-

ment E contains a set of targets T . Neither the number of

targets nor the state of each target is known at any given time

step k and must be estimated. A set of sensing systems S are

used to monitor E .

The state of the environment is modelled as the set of

target states Xk. For an environment with n targets, Xk =
{x1

k, ..., x
k
n}, where xi

k ∈ X is the state of the ith target at

time step k and X is the state space. Because both the number

of targets and the state of each target is unknown, Xk itself is

a random set. More formally, a random finite set (RFS) on X
is a measurable mapping X : Ω → F(X ) where F(X ) is the

set of all finite subsets of X and (Ω, σ(Ω),P) is a probability

space. A rigorous construction of probability distributions and

densities for random finite sets can be found in, e.g., [13]. In

this paper, we assume that the RFS densities we refer to exist.

The transition of a RFS from Xk to Xk+1 is governed

by the transition density fk+1|k(Xk+1|Xk). This transition

must capture changes to both the cardinality of X , modelling

target births and target deaths, as well as the time evolution

of surviving targets [8].

Target survival is modelled as a Bernoulli process. The prob-

ability that the ith target with state xi
k will continue to exist at

k+1 is pS(x
i
k). If the target exists, its state evolves according

to the transition distribution πk+1|k(x
i
k+1|xi

k). These processes

can be summarised by the following equation:

Xk+1 =





|Xk|
⋃

i=1

Yk+1|k(x
i
k)





⋃

Γk+1. (1)

Here, Yk|k−1(x
i
k) terms model the evolution of each target that

persist to exist. The transition is given by

Yk|k−1(x
i
k) =

{

{x̃i
k}, with prob. pS(x

i
k)

∅, with prob. 1− pS(x
i
k)

(2)

where x̃i
k ∼ πk+1|k(x̃

i
k|xi

k). Γk+1 = {b1k+1, ..., b
B
k+1} is the

random set which models target birth. The number of births

B is distributed according to pb(n) and the states b
j
k+1 are

distributed according to sb(x).
Each sensor outputs a set of detections at time k. A target

with state xi
k is detected with probability PD(xi

k). If it is

detected, the measurement is characterised by the likelihood

lk(z
i
k|xi

k). Clutter is modelled using the random finite set Ck,

and, hence, the set of measurements is given by

Zk =





|Xk|
⋃

i=1

Z(xi
k)





⋃

Ck. (3)

where

Z(xi
k) =

{

{z}, with prob. PD(xi
k)

∅, with. prob. 1− PD(xi
k)

(4)

and z is a random vector with density lk(z|xi
k). Clutter is mod-

elled using the random finite set Ck = {c1, · · · , cm} where

m and ci are drawn from the clutter cardinality distribution

pc(n) and localisation distribution sc(z), respectively.

Given all sensor data, the goal is to construct the posterior

density of the multi-target state given by

fk

(

Xk|
{

Zi
1:k

}

i∈S

)

. (5)

One way to achieve this is to pass all the observations from

all the sensing systems to a central site where they would be

fused together. Although such a centralised scheme is optimal,

the need to transmit all observations to a single location could

introduce significant communication overheads. Furthermore,

such an approach is vulnerable because there is a single point

of failure. An alternative is to fuse the data throughout the

network. The idea is that each sensing system can be treated

as a node in a distributed system. Such nodes collect and

process observations locally to create local estimates. These

local estimates (rather than raw observations) are periodically

broadcast to other nodes where they are fused into that node’s

state.

Distributed fusion confers many potential advantages. It can

be robust to failure — if a single node fails, the other nodes

continue to operate and information can be communicated

along the remaining of the network. Distributed fusion allows

systems to be flexible and scalable — additional nodes,

specialised with different processing algorithms and sensing

systems can be added and removed upon demand. However,

most of these advantages can only be achieved if we impose a

strict locality condition: each node only knows the identity of

its immediate neighbours. As a result, no node needs to know

the global topology of the network.

To achieve these goals, we must use algorithms from multi-

target tracking and distributed fusion.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 3

III. BACKGROUND

A. Multi-Object Tracking with Random Finite Sets

As explained above, in the Random Finite Set (RFS)

paradigm, the multi-target state is represented by the ran-

dom set Xk. The probability density function for Xk with

|Xk| = n is

f(Xk) = n!p(n)f(x1
k, . . . , x

n
k ), (6)

where p(n) is the probability that the cardinality of the set is

n and f(·) is the probability density function for the choice

of the state values. The scaling term n! accounts for the fact

that f(·) is symmetric with respect to all of its arguments.

Given suitable definitions of the multi-target process and

observation models, the multi-target state can be estimated

from Bayes rule

fk|k(Xk|Z1:k) =
f(Xk|Zk)fk|k−1(Xk|Z1:k−1)

∫

f(Zk|Xk)fk|k−1(Xk|Z1:k−1)δXk
(7)

where

fk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|Xk−1)fk−1|k−1(Xk−1|Z1:k−1)δXk−1 (8)

and
∫

·δXk denotes the set integral defined by

∫

f(X)δX := f(∅) +
∞
∑

n=1

1

n!

∫

f({x1, . . . , xn})dx1 . . .dxn.

(9)

The Bayesian recursion above is practical only for a very

small number of targets [8]. Instead, a feasible strategy is to

assume that fk(Xk|Z1:k) is a multi–object distribution that

can be characterised by its first order moment.

B. Probability Hypothesis Density Filtering

The Probability Hypothesis Density (PHD) is defined as a

function which, when integrated over a region R, gives the

expected number of targets in R [14]. In the RFS paradigm,

the first order moment of the distribution, or, the intensity

function, D(x) is the PHD [8]. In other words,
∫

R

D(x)dx = E{|X ∩R|}. (10)

Mahler proved that it is possible to construct prediction and

update equations directly in terms of the intensity function

rather than the full multi-object distribution. For example,

in the update stage a pseudo–likelihood Lk(Zk|x;Dk|k−1)
is computed using the observations Zk and the predicted

intensity. The posterior intensity is given by the Bayes-like

update

Dk|k(x|Z1:k) = Lk(Zk|x;Dk|k−1)Dk|k−1(x|Z1:k−1). (11)

Given a certain set of assumptions, computationally cheap

approximations can be derived. The two best known of these

are the PHD filter [15] and the Cardinalised PHD (CPHD) [16]

filter. The PHD filter assumes that the number of targets is

Poisson-distributed and its computational costs are linear in

the number of observations. The CPHD uses a general car-

dinality distribution pk(n) [16]. Although the computational

cost of this algorithm is higher (cubic in the number of

measurements), empirical results have shown that it has greater

performance than the original algorithm [17].

However, the discussion so far has considered fusion at a

single node. We seek methods to fuse data across multiple

nodes, and so techniques from distributed data fusion must be

considered.

C. Optimal Distributed Fusion

In distributed data fusion (DDF), fusion occurs throughout

the entire network rather than at a single, centralised location.

Almost all DDF algorithms have been developed for the single

target case, under the assumption that techniques such as track-

to-track fusion can be used to fuse the different tracks together.

Consider two nodes i and j in the sensor fusion network1.

Each node has received its own set of sensor information

and maintains its own posteriors f(Xk|Zi
1:k) and f(Xk|Zj

1:k)
respectively. Periodically, node i transmits its posterior to node

j. Node j fuses this posterior to compute the joint posterior

f(Xk|Zi
1:k, Z

j
1:k) = f(Xk|Zi

1:k∪Zj
1:k). (12)

The optimal solution to this problem was developed by

Chong, Mori and Chang [18]. They noted that, when fusing

the information from different nodes together, f(Xk|Zi
1:k) and

f(Xk|Zj
1:k) cannot be assumed to be conditionally indepen-

dent of one another. There are two reasons for this dependency.

The first is that common process noises arise whenever both

nodes track the same target. The second is that common

observation noise arises after nodes have begun to exchange

their local estimates with one another. To correctly model these

dependencies, Chong, Mori and Chang proved that

f(Xk|Zi
1:k, Z

j
1:k) ∝

f(Xk|Zi
1:k)f(Xk|Zj

1:k)

f(Xk|Zi
1:k∩Z

j
1:k)

. (13)

This update rule shows that common information between

the nodes must be “divided out”. Various formulations have

been derived for a variety of network topologies [5], [6], [19].

However, in almost all cases, f(Xk|Zi
1:k∩Zj

1:k) can only be

computed if some kind of global oracle continuously monitors

the entire state of the network. The only case where this does

not occur is a tree connected topology, in which a single

path exists between any pair of nodes [6]. This makes it

possible to compute common information by monitoring the

information that flows over edge using so-called “channel

filters”. However, tree connected topologies are inherently

brittle: The failure of a single node will partition the network.

As such, optimal DDF algorithms can only be implemented in

highly restricted circumstances and more general formulations

are sought.

1The argument can be readily extended to networks of arbitrary size in
which, at any given time, a node is updated only with information from a
subset of other nodes in the network.
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D. Suboptimal Fusion Using Exponential Mixture Densities

To overcome the problems associated with the optimal

update in a distributed setting, Mahler proposed to generalise

the Covariance Intersection (CI) to multi–object distributions.

Under this generalisation, the familiar product form of Bayes

Rule is replaced by taking the geometric mean, or, the expo-

nential mixture of the distributions [20],

fω(Xk|Zi
1:k, Z

j
1:k) =

fi(Xk|Zi
1:k)

(1−ω)fj(Xk|Zj
1:k)

ω

∫

fi(X ′
k|Zi

1:k)
(1−ω)fj(X ′

k|Z
j
1:k)

ωδX ′
k

.

(14)

The parameter ω ∈ [0, 1] determines the relative weight

assigned to each distribution2.

The EMD has been analysed traditionally in the context

of a single target distribution. In [21], it is shown that the

distribution that minimises the weighted sum of its Kullback-

Leibler divergence (KLD) with respect to a given set of

distributions is an EMD, e.g.,

fω = argmin
f

(1− ω)D(f ||fi) + ωD(f ||fj)

where D is the KLD.

It has been shown to automatically prevent double count-

ing in arbitrary network topologies [22]. Furthermore, the

algorithm can accumulate information (in the sense that the

determinant of the covariance matrix of the posterior can

be reduced [7] or the peak of the fused distribution can

be greater than the peaks of the prior distributions [23]).

This generalisation has proved to be extremely valuable for

distributed estimation in the single-target case [19], [22]–[24].

Although Mahler proposed the original generalisation of

the EMD fusion rule in the context of multi-target tracking

using RFSs, no attempt was made to develop fusion rules or

algorithms to investigate and realise this generalisation. We

now describe how this can be achieved.

IV. DISTRIBUTED FUSION OF PHD FILTERS

In this section, first, we derive explicit formulae for EMDs

of RFS distribution families that underlie PHD filters. These

formulae enable us to use (14) with posteriors from two

PHD [15], CPHD [16] or Bernoulli [25] filters. Then in

Section IV-B, we introduce strategies for selecting the EMD

weight ω that specifies the fused density.

A. EMDs of RFS Densities

We begin by computing the EMDs of i.i.d. cluster distri-

butions. These are used to fuse posteriors from CPHD filters.

Results for Multi-object Poisson and Bernoulli processes fol-

low from this derivation for distributed fusion of the PHD and

Bernoulli filters respectively.

2This fusion scheme can readily be generalised to an arbitrary number of
sources. For example, if there are n sources, numbered 1, . . . , n, and if Z1:n

1:k

is the union of information from all of those sources, then

fω(Xk |Z
1:n

1:k
) ∝

n∏

i=1

fi(Xk |Z
i

1:k
)ωi , (15)

where 0 ≤ ωi ≤ 1 and
∑

n

i=1
ωi = 1.

Consider two i.i.d. cluster distributions fi and fj . These

are the posteriors output by two CPHD filters in the network.

Omitting the conditioning on the observations for convenience,

fi(X) = n! · pi(n)
∏

x∈X

si(x),

fj(X) = n! · pj(n)
∏

x∈X

sj(x).
(16)

Proposition 4.1: The EMD of the two i.i.d. cluster distri-

butions in (16), fω(X), is also an i.i.d. cluster process of the

form

fω(X) = n! · pω(n)
∏

x∈X

sω(x), (17)

where

sω(x) =
s
(1−ω)
i (x)sωj (x)

Zω(si, sj)
, (18)

pω(n) =
p
(1−ω)
i (n)pwj (n)Z

n
ω(si, sj)

∞
∑

m=0
p
(1−ω)
i (m)pωj (m)Zm

ω (si, sj)
, (19)

Zω(si, sj) =

∫

si(x)
(1−ω)sj(x)

ωdx. (20)

Proof: Substituting from (16) into (14), we obtain

fω(X) =
1

K
n! · pi(n)(1−ω)pj(n)

ω
∏

x∈X

si(x)
(1−ω)sj(x)

ω ,

(21)

where K is the set integral of the numerator over all finite

subsets of the state space. Considering the set integral (9)

K =

∞
∑

m=0

pi(m)(1−ω)pj(m)ω
(∫

si(x
′)(1−ω)sj(x

′)ωdx′

)m

=

∞
∑

m=0

pi(m)(1−ω)pj(m)ωZω(si, sj)
m (22)

where Zω(si, sj) is given by (20).

After multiplying the numerator and denominator of (21)

with Zω(si, sj)
n, we obtain

fω(X) = n!· pi(n)
(1−ω)pj(n)

ωZω(si, sj)
n

K

∏

x∈X

sω(x), (23)

where sω(x) is a probability density over the single object state

space and given by (18). This expression is in the form of an

i.i.d. cluster where the cardinality distribution is identified as

(19) after substituting from (22) into (23).

Proposition 4.1 lets us fuse the posterior distributions prop-

agated by CPHD filters. The localisation density of the fused

distribution (18) is the EMD of the input localisation densities

si and sj . The fused cardinality density, on the other hand, is

the scaled product of fractional powers of input cardinalities

and the scale factor (20) of the fused localisation density raised

to power n.

Given this form, the PHD of the update is directly given by

Dω(x) = µωsω(x), (24)
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where

µω =

∞
∑

n=1

npω(n) (25)

is the expected number of targets.

EMD fusion of two PHD filters follows from Proposition 4.1

after substituting Poisson cardinality densities in (16):

Corollary 4.2: Consider two multi-object Poisson distri-

butions given by (16) where pi(n) and pj(n) are Poisson

densities with parameters µi and µj , respectively. The corre-

sponding EMD is a multi-object Poisson with the cardinality

distribution parameter

µω = µ
(1−ω)
i µω

j · Zω(si, sj) (26)

and localisation distribution given by (18).

Proof: Proposition 4.1 holds for multi-object Poisson

distributions as they constitute a subclass of i.i.d. clusters with

Poisson cardinalities. Therefore, it suffices to show that the

EMD cardinality distribution is Poisson. Consider the EMD

cardinality distribution given by (19) after substituting Poisson

densities:

pω(n) = 1
K

(

µn
i exp(−µi)

n!

)(1−ω)(µn
j exp(−µj)

n!

)ω

Zω(si, sj)
n

= 1
K

(

µ
(1−ω)
i µω

j Zω(si,sj)
)n

n! exp(−µi(1− ω)− µjω)(27)

where the denominator K is found by

K =
∞
∑

m=0

(

µm
i exp(−µi)

m!

)(1−ω)(µm
j exp(−µj)

m!

)ω

Zω(si, sj)
m

=exp(−µi(1− ω)− µjω)
∞
∑

m=0

(

µ
(1−ω)
i

µω
j Zω(si,sj)

)m

m!

=exp(−µi(1− ω)− µjω) exp
(

µ
(1−ω)
i µω

j Zω(si, sj)
)

(28)

After substituting from (28) into (27), we obtain

pω(n) =

(

µ
(1−ω)
i µω

j Zω(si, sj)
)n

exp(−µ
(1−ω)
i µω

j Zω(si, sj))

n!

which is a Poisson distribution with parameter given by (26).

For EMD fusion of Bernoulli filters, we use Proposition 4.1

with Bernoulli cardinalities:

Corollary 4.3: Consider two Bernoulli RFS distributions

given by (16) where pi(n) and pj(n) are Bernoulli densities

with parameters αi and αj respectively, i.e.,

pi(n) =















1− αi, n = 0,

αi, n = 1,

0, otherwise.

(29)

and pj(n) has similar values with parameter αj .

The EMD is a Bernoulli RFS distribution with the cardinal-

ity parameter

αω =
α
(1−ω)
i αω

j Zω(si, sj)

(1 − αi)(1−ω)(1− αj)ω + α
(1−ω)
i αω

j Zω(si, sj)
(30)

and localisation distribution given by (18).

Proof: Proposition 4.1 holds for Bernoulli RFS distri-

butions as they constitute a subclass of i.i.d. clusters with

Bernoulli cardinalities. Therefore, it suffices to show that the

EMD cardinality distribution is Bernoulli. After substituting

Bernoulli densities in (19) and evaluating pω(n) for n =
0, 1, 2, ..., we obtain

pω(n) =











1
K (1 − αi)

(1−ω)(1− αj)
ω, n = 0,

1
Kα

(1−ω)
i αω

j Zω(si, sj), n = 1,

0, otherwise.

(31)

where

K = (1− αi)
(1−ω)(1− αj)

ω + α
(1−ω)
i αω

j Zω(si, sj)

B. Choosing the EMD Weighting Parameter

Unlike Bayes rule, the EMD fusion rule is active in the

sense that the mixture parameter ω must be specified. This

parameter controls the relative weighting on fi and fj . Sup-

pose that J(ω) is a cost function. The goal is to choose ω

such that

ω∗ = arg min
ω∈[0,1]

J(ω). (32)

Motivated by the original derivation of CI, possible choices

for J(ω) include the determinant or the trace of the covariance

of fω [26]. However, when the distribution is multi-modal,

the covariance is not necessarily a good representation of

uncertainty. Another possibility is to consider the Shannon

Entropy of fω [27]. However, the entropy can contain local

minima, making the optimisation in (32) difficult to solve [12].

Therefore, we seek alternative measures that are easy to solve

for but still convey potentially useful information.

In his probabilistic analysis of CI, Hurley [27] proposed

the criteria that the Kullback–Leibler divergence (KLD) of fω
from fi and fj should be the same. Specifically, (32) can be

selected as

J(ω) = (D(fω ||fi)−D(fω||fj))2 . (33)

Although Hurley’s arguments strictly apply to just discrete

distributions, Dabak has generalised then to continuous dis-

tributions [28]. Furthermore he demonstrated that D(fω||fi)
is a non-decreasing function of ω. As a result, (33) possesses

a unique minimum which greatly simplifies the optimisation

problem. However, the information theoretic justification for

using the divergence measure as a cost function is unclear.

Hurley argued his choice on the ground that the resulting

distribution is related to the Chernoff Information. However,

this is associated with binary classification problems, and

its relevance to information fusion is unclear. An alternative

interpretation is to consider this as an example of the Principle

of Minimum Discrimination Information Theorem [29].

Although the KLD is a useful metric, the Rényi Divergence

(RD) has been found to be more useful in sensor management

problems [30]. The RD generalises the KLD through the

introduction of a free parameter α which can be used to

emphasise particular aspects of the differences between the

distributions which are of interest such as its tails. For α → 1
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the Rényi divergence converges to the KLD. For α = 0.5, it

equals the Hellinger affinity and the weight selection criterion

becomes the equality of Hellinger distances.

Using the formula for Rényi divergence between two iid

cluster processes (see, e.g., [30]), it can easily be shown that

Rα(fω(X)||fi(X))

=
1

α− 1
log

∞
∑

n=0

pω(n)
1−αpi(n)

α

[∫

X

sω(x)
(1−α)si(x)

α dx

]n

=
1

α− 1
log

∞
∑

n=0

pαω(n)p
(1−α)
i (n)

[

Zαω(si, sj)

(Zω(si, sj))α

]n

(34)

where Zαω(si, sj) and Zω(si, sj) are obtained using (20).

Following similar steps, the divergence of the EMD with

respect to the second distribution fj(X) can be found by

Rα(fω(X)||fj(X)) =

1

α− 1
log

∞
∑

n=0

pαω(n)p
(1−α)
j (n)

[

Zα(1−ω)(sj , si)

(Zω(si, sj))α

]n

. (35)

The numerical computation of these quantities is discussed in

Section V-D.

Further discussion on the use of different choices of J(ω)
and different α values can be found in [12]. The results suggest

that the divergence measures are easier to implement than

other classes of cost measures and have minimal impact on

the overall performance of the system.

V. IMPLEMENTATION OF THE EMD FUSION ALGORITHM

There are two main challenges when implementing the

EMD fusion rule. The first is that the EMD rarely admits

a closed form solution. For example, if si(x) and sj(x)
in (16) are Gaussian mixture models (GMMs), the weighted

geometric mean computed in (18) will not, in general, be

another GMM. Although a Newton series expansion can be

used to approximate it as a GMM, the series can become

numerically unstable unless an extremely large number of

components are used [31]. Therefore, robust methods for

computation are required. The second issue is that the update

needs to incorporate the effects of the ω selection strategy

outlined in Section IV-B. Since this is an optimisation process,

the updated distributions and divergence values must be repeat-

edly calculated for different values of ω. Therefore, efficient

calculation schemes are required.

When a node processes information collected locally, a

conventional SMC implementation of the CPHD filter is used.

Because of its efficiency with spawning new targets, we

use the Adaptive Birth Process (ABP) proposed by Ristić,

Clark, Vo and Vo [32]. To fuse data from another sensing

system, we must be able to compute (17), (18) and (20) for a

range of values of ω. However, this cannot be carried out

directly because each node has its own particle filter with

its own support. Therefore, we use clustering techniques to

create continuous approximations of the distributions. These

distributions are then sampled from to compute the EMDs

using different particle support.

We now discuss each of these steps in turn.

A. Fusion of Local Information

Each node maintains a local i.i.d. cluster

distribution. For the ith node, this can be written as

{pik|k(n), {ζ
(m)
k|k , x

(m)
i , l(m)}im=1:Mi

}. pik|k(n) is the

cardinality distribution. The three remaining terms store

the information associated with each of the Mi particles used

to represent the localisation distribution. The first component,

ζ
(m)
k|k , is the weight associated with the mth particle x

(m)
i

which is a point generated from the localisation distribution.

Given these two components, the localisation distribution is

computed from

ŝk|k (x|Z1:k) =

Mk
∑

m=1

ζ
(m)
k|k δ

(

x− x
(m)
k|k

)

. (36)

Given the average number of targets,

µk|k =

nmax
∑

n=0

np(n), (37)

where nmax is the length of the storage for p(n), the PHD is

D̂k|k (x|Z1:k) = µk|kŝk|k (x|Z1:k) . (38)

The final term, l(m), is a particle label assigned by the

ABP which initialises potentially new targets by creating

a set of particles for each measurement. We maintain the

measurement-particle associations by labeling particles ac-

cording to the measurement that originated them [32]. Be-

cause the label identifies the measurement which originated

that particle, this information can be used when fusing the

distributions from different nodes together.

B. Continuous Approximation of SMC CPHD for Distributed

Fusion

A node i cannot directly fuse the intensity from node j.

Because each node uses its own SMC representation, each

node will have its own set of particles. Neither the support —

nor the number of particles — are guaranteed to be the same

in each. Therefore, we seek a continuous approximation which

can be used. Such approximation problems are solved through

Kernel Density Estimation (KDE) methods [33], in which the

estimated density is a sum of kernel functions shifted to par-

ticle points. Fraley demonstrated how model-based clustering

methods can be used for density estimation [34]. However,

Fraley’s approach is not robust to outliers which can cause a

high degree of uncertainty in the cardinality distribution and

can lead to many mixture components. Instead, we exploit the

labels present in the ABP to create the clusters. We associate

each cluster l ∈ {l1, ..., lL} with a set of parameters Cl and

use the density estimate given by

ŝ(x|Z1:k) =
1

M

M
∑

m=1

K(x, x(m);Cl(m)), (39)

where K(x, x(m);Cl(m)) is a Gaussian with mean x(m) and

covariance Cl(m) .

Next, we describe the computation of Cl for cluster l:
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In order to find the kernel parameters Cl for the members of

the cluster l, i.e., {x(m′)|l(m′) = l}, we first find a transform

that diagonalises the empirical covariance of these points in the

transformed domain. Then, the problem of finding the kernel

parameters in multiple-dimensions reduces to independent

single dimensional problems.

This transform is given by the inverse square root of the

empirical covariance matrix Σl of cluster l. We transform all

x(m′) ∈ {x(m′)|l(m) = l} using

y(m
′) = Wlx

(m′),

Wl = Σ
−1/2
l .

Given that that the covariance of y(m
′) is diagonal, the

d-dimensional Gaussian kernel in the transformed domain

simplifies to

K
(

y, y(m
′)
)

=

d
∏

k=1

1√
2πhk

exp






−1

2

(

yk − y
(m′)
k

)2

h2
k







where d is the dimensionality of the state space and hks are the

bandwidth (BW) parameters of the 1-D Gaussian kernels [33].

The BW hk for each dimension can be found using one

of the well established methods in the literature [35]. In

particular, we use the following rule-of-thumb (RUT) [33]:

hk = σk

(

4

3N

)1/5

where σk is the empirical standard deviation of y
(j)
k s and N

is the number of these points. The reason for this choice is

its simplicity and low computational complexity compared to

other methods such as least squares cross-validation [35].

Therefore, the covariance matrix that specify the kernels in

(39) for the members of the cluster l is found as

Cl = TlΛlT
T
l

Tl = W
−1
l

Λt = diag(h2
1, h

2
2, ..., h

2
d)

C. Construction of the EMDs

In this Section, we consider the EMD in Proposition 4.1

and introduce Monte Carlo methods to construct the multi-

object EMD for any ω ∈ [0, 1]. We first introduce a sampling

procedure to generate particles representing the localisation

density sω(x) given by (18). We then find the cardinality

distribution (19) after estimating the scale factor Zω given

by (20).

1) Sampling from the EMD Localisation Distribution: We

consider sampling from the fused localisation density (18)

using equally weighted sets of particles {x(mi)
i }mi=1:Mi

and

{x(mj)
i }mj=1:Mj

together with KDE parameters {Cli}li∈Li

and {Clj}lj∈Lj
representing si(x) and sj(x) respectively.

The consistency properties of the EMDs [23] motivate the

use of non-degenerate mixtures of si(x) and sj(x) as proposal

densities for importance sampling (IS). The reason for this is

that, in our experience, these mixtures tend to have heavier

tails [36] than that of sω(x). The union of the input particle

sets, i.e.,

PU , {x(mi)
i }mi=1:Mi

∪ {x(mj)
i }mj=1:Mj

(40)

is constituted of Mω = Mi +Mj samples from the mixture

density

sp(x) =
Misi(x) +Mjsj(x)

Mi +Mj
. (41)

Therefore, PU given by (40) is a convenient particle set to

represent sω(x) in which case the IS weights for x(m′) ∈ PU

are given by

ζ(m
′) ∝

s
(1−ω)
i (x(m′))sωj (x

(m′))

Misi(x(m′)) +Mjsj(x(m′))
. (42)

After resampling {ζ(m′), x(m′)}m′=1:Mi+Mj
for Mi +Mj

times, one obtains samples approximately generated from

sω(x). In order to compute the IS weights (42), however,

evaluation of both si(x) and sj(x) at all points of PU is

necessary. For estimating these values, we use the KDE

parameters {Cli}li∈Li
and {Clj}lj∈Lj

within (39) and obtain

the KDEs ŝi(x) and ŝj(x) respectively. Then, we evaluate

ŝi(x) and ŝj(x) at PU . Hence, feasible estimates of ζ(m
′)s

are computed by substituting these quantities in (42):

ζ̂(m
′) ∝

ŝ
(1−ω)
i (x(m′))ŝωj (x

(m′))

Miŝi(x(m′)) +Mj ŝj(x(m′))
. (43)

After resampling, {ζ̂(m), x(m)}, we obtain equally weighted

samples representing sω(x).
2) Construction of the EMD Cardinality Distribution: In

order to compute the fused cardinality distribution given by

(19), one needs to estimate Zω(si, sj) given by (20). Using

the proposal density sp(x) given in (41), the IS estimate [36]

of this quantity is given by

Z̃ω(si, sj) ,
∑

x∈PU

s
(1−ω)
i (x)sωj (x)

Misi(x) +Mjsj(x)
(44)

where PU is the union of the input particles sets (40).

We substitute the KDEs ŝi(x) and ŝj(x) in (44) to achieve

computational feasibility and obtain

Ẑω(si, sj) ,
∑

x∈PU

ŝ
(1−ω)
i (x)ŝωj (x)

Miŝi(x) +Mj ŝj(x)
(45)

After estimating the scale factor, pω(n) can be constructed

by substituting pi(n), pj(n) and Ẑω(si, sj) in (19) for n =
0, 1, ..., nmax where nmax +1 is the length of the storage array.

D. Computation of the Rényi divergences

We consider the estimation of the Rényi divergences

Rα(fω(X)||fi(X)) and Rα(fω(X)||fj(X)) given by

(34) and (35), respectively, to use within (33). Given α and

ω, we first construct the EMD cardinality pω(n) as described

in Section V-C2. In order to do that, one evaluates the

KDEs ŝi(x) and ŝj(x) at PU only once. Then, Zω(si, sj),
Zαω(sj , si) and Zα(1−ω)(sj , si) are estimated with these

evaluations using (45) with the only difference being the
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TABLE I
INITIAL TARGET STATES AND TRACK INFORMATION.

Init. loc. (m.) Init. vel. (m/s) time of birth/death (s.)

[1333.3, 6866.7]T [0.0, −136.7]T 0/70

[−4000.0, 4000.0]T [106.7, −106.7]T 10/85

[−6135.3, 1594.1]T [137.6, 12.9]T 25/95

[−4000.0, 5000.0]T [120.0, −40.0]T 35/110

[4000.0, 4000.0]T [−106.7, −106.7]T 50/120

value of the subscript parameter in the left hand side.

Finally, we substitute these quantities into (34) and (35) and

(33). Note that the KDE evaluations are the most resource

demanding procedures required for fusion. Nevertheless

all MC computations described in Sections V-C–V-D use

the same set of evaluations. Therefore, the computational

overhead of divergence evaluations in EMD fusion is

negligible.

E. The MC Multi-object EMD fusion algorithm

We use the MC procedures developed in Section IV. A

pseudo-code of the proposed fusion algorithm is given in

Algorithm 1. The first inputs of the algorithm are the local

and the incoming particle representations of the i.i.d. cluster

posteriors. Then, the α parameter of the Renyi divergence is

entered which is used for calculating the cost J(ω) in (33).

Finally, an increment value ∆ is input for finding the best

EMD weight ω∗ by exhaustive search3.

First, the KDE parameters of the particle sets are found.

Then, the sample set PU from the proposal distribution is

constructed, and, KDEs of the input localisation densities are

evaluated at the particles in this set. Once the KDEs are

evaluated at PU , the Rényi divergences of the EMD with

respect to the inputs and the cost in (33) is computed while

ω is varied with ∆ increments starting from ω = 0. After the

costs are found over the grid specified by ∆, the best EMD

weight ω∗ is found. In the following step, IS weights of the

proposal samples are computed for ω∗.

The output of the algorithm is a set of particles representing

the fused localisation density sω∗(x) and the fused cardinality

distribution array pω∗(n). The most computationally demand-

ing step in the algorithm is the evaluation of the KDEs. Since

we need to perform this step only once before the for loop, the

computational cost of the exhaustive search remains negligible.

VI. EXAMPLES

In this Section, we test the performance of the EMD fusion

algorithm using the distributed tracking scenario shown in

Fig. 2. Four fixed range-bearing sensors (S1, S2, S3 and S4)

observe the environment E in which 5 targets appear and

disappear over time. The state of each target is defined by

its position [x, y] and velocity [ẋ, ẏ].
The tracks are obtained by evolving target states [x, y, ẋ, ẏ]T

in accordance with a linear constant velocity motion model

and (slight) additive zero mean process noise. The initial states

3In Section IV-B, we discussed that when equality of divergences are used
for selecting the EMD weight ω, one can safely use convex optimisation
methods as well. In this paper, however, we perform an exhaustive search
over a grid in [0, 1] values of which are defined by the increment ∆.

−6000 −4000 −2000 0 2000 4000 6000

−10000

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

T1

T2
T3

T4

T5

S1 S2

S3 S4

E

x

y

Fig. 2. Target tracks and sensor locations for the example scenario: Sensors
1, 2, 3 and 4 are shown with black ‘+’, blue ‘×’, red ‘⋄’ and orange ‘�’,
respectively. The target tracks shown by green lines are initiated at the
locations shown by circles. The birth and death times are given in Table I.

together with times of birth and death are given in Table I. The

observation model for each sensor is the same — the standard

deviations in range and bearing are 5m and 2◦ respectively.

The probability of detection in each sensor is independent

of the probability of detection at all other sensors and is

PD = 0.90. The number of clutter reports in each scan is

Poisson distributed with λ = 12. Each clutter report is sampled

uniformly over E .

A. EMD Fusion of a Sensor Pair

In this example we consider fusion of the sensor pair S1

and S2. Platform S2 regularly transmits its posterior to S1 at

every time step. Three algorithms were tested:
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Fig. 3. Average performances of filter 1 (black-dashed line ), filter 2
(blue-dashed line), the EMD fusion (magenta line) and the centralised filter
(red line): (a) OSPA localisation error, (b) Absolute cardinality error, (c)
(combined) OSPA error.
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Algorithm 1 Multi-object EMD Fusion Algorithm for Monte Carlo realisations at local sensor i.

Inputs: (pi, {x(mi)
i , l

(mi)
i }mi=1:Mi

) of the local sensor i and (pj , {x(mj)
j , l

(mj)
j }mj=1:Mj

) from sensor j,

α parameter of the Renyi divergence,

∆ for the increments of ω.

Find {Cli}li∈Li
and {Clj}lj∈Lj

as described in Section V-B,

Find PU given by (40),

Find the KDE evaluations Si , {ŝi(x)|x ∈ PU} and Sj , {ŝj(x)|x ∈ PU}mi=1:Mi
using the KDE parameters {Cli}li∈Li

and {Clj}lj∈Lj
in (39).

for ω = 0,∆, . . . , 1 do

Estimate Zω,Zαω and Zα(1−ω) using Si and Sj in (45) ⊲ Note that Si and Sj are evaluated before entering the loop.

Find pω using the estimated Zω in (19)

Find Rα(fω, fi) using pω, the estimated Zω and Zαω in (34)

Find Rα(fω, fj) using pω, the estimated Zω and Zα(1−ω) in (35)

Find J(ω) using Rα(fω, fi) and Rα(fω, fj) in (33)

end for

Find ω∗ = argminω∈{0,∆,...,1} J(ω),

Find IS weights ζ(m
′) for ω = ω∗ and for each x(m′) ∈ PU using Si and Sj in (43), ⊲ pω∗ is already found in the for loop.

Store the labels L = Li ∪ Lj and the KDE parameters C , {Cli}li∈Li
∪ {Clj}lj∈Lj

Return: (pω∗ , {x(m′), ζ(m
′), l(m

′)}m′=1:Mi+Mj
) and C

1) No fusion. Each node operates independently of the

other node and use the SMC CPHD filter with ABP

(Section V). We use 1500 particles per persistent target

and 300 particles are generated per observation for mod-

eling target births. The survival probability PS = 0.98
and the new born target intensity is selected as 0.9e−3.

2) Centralised fusion. The measurements are sent to a cen-

tral site and fused together (using the iterated corrector

approximation [37]).

3) Distributed fusion. The EMD fusion scheme was used.

We select the Rényi divergence parameter α = 0.5 and

the search increment ∆ = 0.01. With these conditions,

we seek an EMD which is equi-distant to both posteriors

in the Hellinger distance sense.

Fig. 3 shows the performance of the different algorithms

assessed using the OSPA metric. We use the cut-off parameter

c = 500m. and the exponent parameter d = 1 which allows us

to use OSPA localisation also as a distance metric. Graphs are

presented for the OSPA localisation error, the absolute error

between the expected value of the cardinality distribution and

the true number of targets, and the combined OSPA distance

averaged over 150 Monte Carlo runs. The results demonstrate

that fusing data from the different sensing systems can greatly

reduce both the localisation and the cardinality errors. Not

surprisingly, the centralised scheme, which optimally fuses all

estimates together, produces the smallest errors. However, the

distributed fusion algorithm also shows significant improve-

ments in performance.

The computational times for the algorithms vary with the

number of particles. Using nonoptimized MATLAB code on

an 8-core 2.7 GHz. laptop with 8 GBs of memory, one

iteration of the CPHD filter takes a maximum of 2.467s, and, a

minimum of 0.675s is reached when only a single target exists.

The maximum and minimum average times for fusion are

4.322×101s and 4.555s, respectively. KDE evaluations during

these computations take 4.192×101s and 4.296s, respectively.

The for loop evaluating the information cost over a 100 point

grid for ω takes maximum and minimum values of 0.834s
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Fig. 4. (a)–(d) Average (combined) OSPA error for platforms 1 − 4,
respectively, using feedback from EMD fusion. The upper bounds are the
performances for (myopic) filtering of local observations and the lower bound
is the performance of the centralised filter.
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and 0.225s. The steps of the fusion algorithm including the

KDE evaluations can be parallelised. If these computations

are carried out using, for example, graphical processing units

(GPUs), substantial speed-ups can be obtained [38].

B. EMD Fusion of Multiple Sensors

In this example, we consider fusion of multiple sensors

assuming that the communication constraints do not allow

for transmission of frequent updates among sensor platforms

and each platform can receive at most one posterior from

one of its neighbours at a given time. The platforms which

receive posteriors from their neighbours first employ EMD

fusion and then replace the local posterior maintained by the

local filter with the fusion output – to be updated in the

next time step using the local observations and the CPHD

filter prediction/update. Note that the fact that EMDs prevent

double-counting of information allows this feedback scheme

to be used without affecting the optimality of the prediction

and update stage of filtering in the following time step.

We use a communication regime which involves repeat-

ing a pattern for the transmissions starting at time step 2.

At this step, the transmitter-receiver pairs are selected as

{(S3, S1), (S4, S2)}. Upon receiving the posterior from a

neighbour, each of S1 and S2 employs EMD fusion and

replace their local posterior with the fusion output. At time

step 3, the transmission pattern is {(S1, S2), (S2, S1)}. At

timestep 4, the selected pairs are {(S1, S3), (S2, S4)}. This

communication pattern means that all nodes communicate with

all other nodes.

We present the performance gain provided by EMD fusion

using (combined) OSPA error with respect to the ground

truth for all platforms 1 − 4 in Fig.4(a)-(d), respectively.

The results are averaged over 150 Monte Carlo runs. The

upper bounds (blue dashed lines) are obtained by averaging

(combined) OSPA error for solely filtering local observations.

The lower bound (solid red line) is the OSPA performance

of the centralised filter. Local filters receiving feedback from

EMD fusion (solid black lines) perform significantly better

than myopic filtering and fairly close to the centralised result

under an infrequent communication regime.

VII. CONCLUSION

In this work we have investigated and developed a novel

strategy for robust, distributed multi-sensor multi-object track-

ing. In particular, we have considered distributed fusion of

Probabilistic Hypothesis Density filters through a generalisa-

tion of the Covariance Intersection fusion rule to multi-object

EMDs. We have introduced practical algorithms using Monte

Carlo methods and evaluated the performance of these algo-

rithms in challenging scenarios through statistical simulations.

EMD fusion significantly improves upon the performances

of myopic multi-object filters through local communications

among nodes over an unknown, dynamic global network

topology. Future work will involve the investigation of these

algorithms for jointly fusion and sensor registration.
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