
DISTRIBUTED ESTIMATION OF LATENT PARAMETERS IN STATE SPACE MODELS
USING SEPARABLE LIKELIHOODS
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ABSTRACT

Motivated by object tracking applications with networked sensors,

we consider multi sensor state space models. Estimation of latent pa-

rameters in these models requires centralisation because the parame-

ter likelihood depend on the measurement histories of all of the sen-

sors. Consequently, joint processing of multiple histories pose diffi-

culties in scaling with the number of sensors. We propose an approx-

imation with a node-wise separable structure thereby removing the

need for centralisation in likelihood computations. When leveraged

with Markov random field models and message passing algorithms

for inference, these likelihoods facilitate decentralised estimation in

tracking networks as well as scalable computation schemes in cen-

tralised settings. We establish the connection between the approxi-

mation quality of the proposed separable likelihoods and the accu-

racy of state estimation based on individual sensor histories. We

demonstrate this approach in a sensor network self-localisation ex-

ample.

Index Terms— sensor networks, hidden Markov models,

Markov random fields, pseudo-likelihood, simultaneous localisa-

tion and tracking

1. INTRODUCTION

State space models and their stochastic versions known as hidden

Markov models [1] are used to represent a wide range of dynamic

phenomena including spatio-temporal processes (see, e.g., [2]), indi-

vidual dynamic systems and their populations [3]. As such, sensing

applications, in which sensors dispersed over a region collect mea-

surements from moving objects in their field of view, benefit from

these models in solving problems involving the estimation of object

trajectories.

These models often involve latent parameters [4] which need

to be estimated based on measurements that the objects induce

on the sensors. In fusion (or, object tracking) networks, locali-

sation/calibration of sensors in a GPS denying environment using

point detections of non-cooperative targets [5–7] can be treated as an

instance of this problem setting. Another example is the estimation

of the orientations and positions of nodes in a camera network based

on feature detections [8].

The difficulty in multi-sensor settings is that the parameter like-

lihood requires all the target measurements collected across the net-
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work to be filtered jointly. When a large number of sensors are

involved, the complexity of joint filtering overwhelms likelihood

evaluation both in maximum likelihood (ML) algorithms (e.g., [5])

and Bayesian estimation recursions (e.g., [6]). In this setting, even

a quadratic complexity with the number of sensors might be pro-

hibitive as is the case in linear Gaussian state space models [9, 10].

These difficulties are exacerbated in the case of more complex state

space models, for example, set valued state variables [11], or, those

with measurement association uncertainties [12]. Consequently, the

joint filtering approach suffers from poor scalability with the number

of sensors.

Decentralised paradigms, on the other hand, have more desirable

properties such as scalability, better resource utilisation and flexibil-

ity. This is often achieved by filtering sensor histories individually

thereby maintaining a linear O(N) cost for filtering. The filtered

posteriors are then communicated and combined using fusion algo-

rithms leading to a trade-off between the estimation accuracy and

scalability. This perspective has parallels with the use of message

passing schemes for distributed estimation [13–15]. The structure

of the problem we consider, however, differs in that the parameter

likelihood does not readily factorise into local functions implying a

Markov model as in this line of work.

The need for centralised operation for evaluating a parameter

likelihood also arises in the context of estimation of parametric dis-

tributions from samples. In this context, the use of surrogate local

functions has been proposed [16–18], for efficient estimation. In our

earlier work, we used a similar approach together with the perspec-

tive of local filtering and proposed separable likelihood functions for

our problem setting [19, 20]. These likelihoods factorise into a pair

of local terms and lead to a dual-term parameter likelihood approxi-

mation in state space models.

In this work, we propose an alternative separable likelihood for

parameter estimation in distributed state space models. The sepa-

rable structure allows its evaluation to be done using local filtering

operations which in turn results with a linear filtering cost across the

network. We assess the approximation quality using the Kullback-

Leibler divergence (KLD) [21] of the proposed likelihood with re-

spect to the actual likelihood obtained by joint filtering. In particular,

we relate this divergence to the uncertainties in predicting and esti-

mating the underlying state using individual and joint sensor histo-

ries. We show that with more accurate local filters the approximation

quality improves and the proposed quad-term separable likelihood

has an improved error bound compared to the aforementioned dual-

term likelihood. We leverage the node-wise separable likelihoods

with pairwise Markov random fields (MRFs) and obtain a message

passing scheme for parameter estimation in distributed multi-sensor

state space models similar to, for example, [13–15].



The article is structured as follows: We provide the problem

statement in Section 2. Then, we introduce the quad-term node-

wise separable likelihood approximation in Section 3. In Section 4,

we combine these likelihoods with pairwise MRFs. In section 5, we

demonstrate the efficacy of our approach through a linear Gaussian

state space model. Finally, we conclude in Section 6.

2. PROBLEM DEFINITION

For simplicity in exposition but without loss of generality, we build

the discussion upon a two sensors and a single Markov process case.

Let us consider observation processes {Zi
k}

t
k=1 and {Zj

k}
t
k=1 as-

sociated with sensors i and j, respectively, together with a Markov

process {Xk}
t
k=1 specified by an initial state distribution and a tran-

sition density, all spanning time from k = 1 to t. The state space

model with parameters θ is then specified as follows [22]: The state

value xk is a point in the state space X and is generated by the chain

Xk|(X1:k−1 = x1:k−1) ∼ π(xk|xk−1; θ), X1 ∼ π1(x1; θ),

where .|. denotes conditioning. Measured values zik and z
j
ks are

points in Zi and Zj respectively, and, they are generated indepen-

dently in accordance with the likelihood models

Z
i
k|(X1:k = x1:k, Z

i
1:k = z

i
1:k) ∼ gi(z

i
k|xk; θ)

Z
j
k|(X1:k = x1:k, Z

j
1:k = z

j
1:k) ∼ gj(z

i
k|xk; θ)

where subscript 1 : k indicates a vector concatenation over time.

Here, θ can capture a wide range of parameters such as noise

model parameters and sensor locations. When θ is known, infer-

ence in this model reduces to the estimation of Xk by multi-sensor

filtering. When θ is unknown, its likelihood measures a goodness

of fit to the measurements and is evaluated via multi-sensor filter-

ing [4, Sec.IV]:

l
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z
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, (1)

p
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z
i
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k|z

i
1:k−1, z
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)

=
∫ (

gi(z
i
k|xk, θ)gj(z
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)

×p(xk|z
i
1:k−1, z

j
1:k−1, θ)dxk, (2)

where the first line follows from the chain rule of probabilities. The

second line above is the contribution at time step k which updates the

likelihood of the previous time step and is found using the Markov

property that the sensor measurements are independent of the mea-

surement histories, conditioned on the current state and θ. Let us

denote this relation by Z
j
k ⊥⊥ Z

j
1:k−1|Xk, θ (see, e.g., [23]). The

integrands in the expression for the likelihood update term in (2)

are the multi-sensor likelihood and the prediction density for Xk

based on the history of both sensors i and j. In other words, (2) is

the scale factor for the posterior density of Bayesian recursions, or,

the “centralised” filter. Therefore, the computation of the parame-

ter likelihood (1) requires that a centre collects the measurements of

both sensors and sequentially filters them jointly for k = 1, . . . , t to

compute (2).

We are interested in estimating θ without resorting to joint fil-

tering and with a computational structure that is well suited for dis-

tributed/decentralised operation such as message passings.

3. QUAD-TERM NODE-WISE SEPARABLE LIKELIHOODS

In this section, we introduce an approximation for the parameter

likelihood which factorises into terms local to nodes i and j, i.e.,

a node-wise separable approximation. Let us consider the likelihood

update term in (2). This term factorises in alternative ways as fol-

lows:
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(5)

In the first and second lines above, the chain rule is used. The

third equality can be found by taking the geometric mean of the first

two expressions. The conditioning of the four factors in Eq.(5) to the

measurement histories of both sensors prevents decentralisation. In

order to avoid this, let us leave out the history of sensor i (sensor j)

in the first two (last two) terms of (5), i.e.,

q(zik, z
j
k|z

i
1:k−1, z

j
1:k−1, θ) ,

=
1

κk(θ)

(

p(zik|z
j
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j
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j
k|z

j
1:k−1, θ)
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×
(
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(6)

κk(θ) =
∫∫

dzikdz
j
k

(

p(zik, z
j
k|z

j
1:k−1, θ)p(z

i
k, z

j
k|z

i
1:k−1, θ)

)1/2

(7)

where κk(θ) is the normalisation constant that guarantees q to inte-

grate to unity. Note that κk is a function of the parameters θ.

The appeal of this quadruple term is that the factors depend on

single sensor histories. As such, they require filtering of sensor his-

tories of i and j individually and in turn allow us to avoid centralisa-

tion. Next, we consider the difference between the update term (2)

and the quad-term approximation introduced in (6). Because these

terms are probability densities over the sensor measurements, their

“divergence” can be quantified using the KLD [21]. For this reason,

we incorporate θ in the joint probabilistic model that encompasses

the HMM model as a random variable Θ associated with the prior

density –equivalently, its marginal in the joint model– p(θ):

Proposition 3.1 The KLD between the centralised update and the

node-wise separable approximation in (6) is bounded by the average

of the Mutual Information (MI) [21] between the current measure-

ment pair and a single sensor’s history conditioned on the history of

the other sensor, i.e.,

D(p(zik, z
j
k|z

i
1:k−1, z

j
1:k−1, θ)||q(z

i
k, z

j
k|z

i
1:k−1, z

j
1:k−1, θ)) ≤

1

2
I(Zi

k, Z
j
k;Z

i
1:k−1|Z

j
1:k−1,Θ)+

1

2
I(Zi

k, Z
j
k;Z

j
1:k−1|Z

i
1:k−1,Θ).

(8)

Proof. We begin the proof by substituting the distributions of con-

cern in the definition of (conditional) KL-divergence in (8) and

obtain (9) and (10) where κk(θ) is the normalisation constant for

q defined in (7). Eq.(9) follows from the multiplication of both the

numerator and the denominator of the quotient inside the logarithm

by p(zi1:k−1|z
j
1:k−1, θ)p(z

j
1:k−1|z

i
1:k−1, θ) and a rearrangement of

the terms. The definition of MI results with the first two terms

in Eq.(10). The last term is the expectation of the normalisa-

tion constant over the joint distribution over the sensor histories
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j
1:k−1, and, Θ . Consider the normalisation constant:

κk(θ) =

∫
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= 1.

The inequality (11) follows from Hölder’s Inequality. Consequently,

the last term in (10) is non-positive, and we obtain Eq.(8). �

The upper bound given in Proposition 3.1 measures the depar-

ture of the current measurements and one of the sensor histories from

conditional independence when they are conditioned on the history

of the other sensor. Note that these variables, when conditioned on

Xk, are conditionally independent, i.e., (Zi
k, Z

j
k) ⊥⊥ Z

j
1:k−1|Xk,Θ

holds and consequently

I(Zi
k, Z

j
k;Z

i
1:k−1|Xk,Θ) = I(Zi

k, Z
j
k;Z

j
1:k−1|Xk,Θ) = 0.

Similarly, the average MI term on the right hand side of (8) is zero if

(Zi
k, Z

j
k) ⊥⊥ Zi

1:k−1|Z
j
1:k−1,Θ and (Zi

k, Z
j
k) ⊥⊥ Z

j
1:k−1|Z

i
1:k−1,Θ

hold simultaneously. This condition is satisfied, for example, in the

case that either of the measurement histories Zi
1:k−1 and Z

j
1:k−1 are

sufficient statistics for Xk (i.e., it can be predicted by both sensors

with probability one). This level of accuracy should not be expected

as the transition density of state space models introduce some uncer-

tainty. Therefore, it is instructive to relate the KLD in (8) further to

the uncertainty on Xk given the sensor histories:

Corollary 3.2 The KLD considered in Proposition 3.1 is upper

bounded by the weighted sum of uncertainty reductions in the lo-

cal target prediction and posterior distributions achieved when the

other sensor’s history is included jointly:
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where H denotes the Shannon Entropy [21].

Proof. We apply the chain rule of information to the MI terms on

the RHS of (8) leading to

I(Zi
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The MI terms on the RHSs of the equations above are for random

variables which form Markov chains with the current target stateXk .

Consider the (conditional) chains Z
j
k ↔ Xk ↔ Zi

1:k−1|Z
j
1:k−1,Θ

and Zi
k ↔ Xk ↔ Zi

1:k−1|Z
j
1:k−1,Θ for the RHS of Eq.(13). The

Data Processing Inequality [21] applied to these terms lead to
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A similar break down of Eq.(14) results with

I(Zi
k, Z

j
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Substituting from (15) and (16) into (8) results with (12). �

Corollary 3.2 relates the approximation quality of the quad-term

node-wise separable updates to the uncertainties in the target state

prediction and posterior distributions when individual node histories

and their combinations are considered. The first term in the RHS

of (12) is the sum of the uncertainty reductions in the predicted target

state by taking the other sensor’s history into account. The second

term involves, similarly, the reductions in the target state estimation

by the introduction of the other sensor’s history. Therefore, a better

quality of approximation should be expected for the cases that the

local filtering densities involved concentrate around a single point in

the state space. Equivalently, the quality of approximation is better if

sensor i or j does not achieve a significant improvement in accuracy

for predicting and estimating Xk when the measurement history of

the other sensor is incorporated into local filtering.



It can be shown that the upper bound in (8) for the quad-term

approximation is smaller than the exact KLD of the aforementioned

dual term approximation [20]. In other words, the quad-term approx-

imation is closer to the centralised update compared to the dual-term

approximation, in terms of its KLD. On the other hand, the scaling

factor of the dual term approximation is unity regardless of θ thereby

admitting a significant amount of flexibility in the range of the distri-

butions and likelihoods that can be accommodated in the state space

model, for example, random finite set models [20]. Evaluation of the

scaling factor in (7) might not be straightforward for general prob-

lem settings.

A node-wise separable likelihood built upon the quad-term up-

date is obtained after substituting q in (6) as the update term in (1):
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where the four terms rtij , s
t
ij , r

t
ji, and stji have recursive forms given

by

r
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ij(θ) , r
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ij (θ)p(zik|z

j
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j
1:k−1, θ), (18)

s
k
ij(θ) , s
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i
1:k−1, θ), (19)

r
k
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i
k, z

i
1:k−1, θ), (20)

s
k
ji(θ) , s
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ji (θ)p(zjk|z

j
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for k = 1, . . . , t. The normalisation constant Kt can also be found

recursively using the update terms found using (7).

This approximate likelihood can be evaluated in a distributed

fashion in which sensor nodes filter their own measurement histo-

ries and exchange these posteriors with the other node at every time

step k = 1, . . . , t. Node i, based on its local measurements and the

posterior from j, computes rij and sij above for each k. Node j per-

forms a similar operation, and, in this respect, subscript ij indicates

that the associated term is computed at sensor i and will be transmit-

ted to sensor j and vice versa. The product of the local terms and the

received terms yield the quad-term node-wise separable likelihood

after normalisation with (7).

4. PAIRWISE MARKOV RANDOM FIELD MODELS FOR

DISTRIBUTED ESTIMATION IN STATE SPACE MODELS

The benefits of the quad-term node-wide separable likelihood intro-

duced in the previous section can be extended to the case of N > 2
sensors by using the product of separable likelihoods for pairs of sen-

sors. The filtering cost is O(N) regardless of the number of quad-

terms to be evaluated. Of course, selecting all possible
(

N
2

)

terms

to be included might undermine the benefits obtained in terms of fil-

tering. We are interested in cases in which the selected pairs render

a connected planar graph thereby yielding the number of pairs less

than O(N2). Then, the minimum number of quad-terms one can

select is the number of edges in a spanning tree, i.e., N − 1.

A particularly interesting case is when θ is a concatenation of

unknown parameters local to nodes, i.e., θ = [θ1, ..., θN ]. Let us

denote by E the set of pairs for which the quad-term likelihood will

be incorporated and by V the set of sensor nodes. Together with

a priori distributions selected for Θis, the corresponding parameter

Fig. 1. A multi-sensor state space - or, hidden Markov- model (black

dashed box on the right representing a chain over t) parameterised

with a Markov Random field (the blue edges on the left).

posterior is a pairwise Markov random field over G = (V, E) [23]:

p(θ|Z1
1:t, ..., Z

N
1:t) ∝

∏

i∈V

ψi(θi)
∏

(i,j)∈E

ψ
t
ij(θi, θj), (22)

ψi(θi) = p0,i(θi),

ψ
t
ij(θi, θj) = l̃(zi1:t, z

j
1:t|θi, θj),

where the node potential functions (i.e., ψis) are arbitrary priors

for θi (e.g., uniform distributions over bounded sets θis take values

from) and the edge potentials (i.e., ψt
ijs) are the quad-term separable

likelihoods for the pairs (i, j)s based on sensor histories up to time t.

This model is illustrated in Fig. 1 and enables the estimation

of θ in a distributed fashion: The pairwise MRF model in (22) al-

lows the computation of the marginal densities through iterative lo-

cal message passings such as Belief Propagation (BP) [24]. In BP,

the nodes maintain distributions over their local variables and update

them based on messages from their neighbours which summarise the

information neighbours have gained on these variables. This is de-

scribed for all i ∈ V by

mji(θi) =

∫

ψ
t
ij(θi, θj)ψj(θj)

∏

i′∈ne(j)\i

mi′j(θj) dθj , (23)

p̃i(θi) ∝ ψi(θi)
∏

j∈ne(i)

mji(θi). (24)

In BP iterations, nodes simultaneously send messages to their

neighbours using (23) (often starting with constants as the previously

received messages) and update their local “belief” using (24). If G
contains no cycles (i.e., G is a tree), p̃is are guaranteed to converge to

the marginals of (22), in a finite number of steps [24]. For the case

in which G contains cycles, iterations of (23) and (24) are known

as loopy BP (LBP) and has been been very successful in comput-

ing approximate marginals in a distributed fashion, in fusion, self-

localisation and tracking problems in sensor networks [13, 14, 25].

In the resulting algorithm, we consider the pairwise MRF model

in (22) equipped with quad-term node-wise separable likelihoods.

The sensor histories are filtered individually and the filtered posteri-

ors are exchanged with the neighbouring sensors which are then used

to compute the update terms in (18)–(21). This yields a cost of filter-

ing linear in the number of sensors. At the end of k steps, the edge

potentials in (22) are computed using (17). Finally, the marginal pa-

rameter posteriors are found using LBP message passing operations

specified by (23) and (24).

5. EXAMPLE: SELF-LOCALISATION IN LINEAR

GAUSSIAN STATE SPACE MODELS

In this example, we consider a state space model which is linear

with additive Gaussian uncertainties given (unknown) sensor loca-
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Fig. 2. Example scenario: Sensors (S1-S9) collect measurements

from an object (T1) with initial position denoted by the black square.

The blue lines depict the MRF model for the estimation task.

tions θis, i.e.,

π(xk|xk−1) = N (xk;Fxk−1,Q) (25)

gi(z
i
k|xk; θi) = N (zik;Hi(xk − θi),Ri) (26)

where N (.;m,P ) is a multi-dimensional Gaussian density with

mean vector m and covariance matrix P. The linear transformation

F specifies the state transition dynamics whereas Q is the process

noise covariance matrix. Hi is the observation matrix and Ri is the

observation noise covariance, both associated with sensor i.

For given values of the unknowns, optimal Bayesian filtering is

carried out by Kalman filtering (KF) owing to the conditionally lin-

ear/Gaussian nature of the model. Specifically, for each sensor j, we

use a KF with the history z
j
1:k which yields the following Gaussian

prediction and posterior distributions at time k:

p(xk|z
j
1:k−1; θi,j) = N (xk; x̂

j
k|k−1 + θj ,P

j
k|k−1),

p(xk|z
j
k, z

j
1:k−1; θi,j) = N (xk; x̂

j
k|k + θj ,P

j
k|k).

After multiplying these densities with the measurement likeli-

hood of sensor i and marginalising out the state variable, we obtain

the update terms in (18) and (19) as follows:

p(zik|z
j
k, z

j
1:k−1, θi,j) = N (zik;Hi(x̂

j
k|k + θj − θi),Sk) (27)

Sk = Ri +HiP
j
k|kH

T
i

p(zik|z
j
1:k−1, θi,j) = N (zik;Hi(x̂

j
k|k−1+ θj−θi),Sk|k−1)(28)

Sk|k−1 = Ri +HiP
j
k|k−1H

T
i

The four terms in (18)–(21) as well as the scaling factor κk(θi,j)
in (7) can be found in closed form, the latter using integration rules

of quadratic exponentials.

We consider the scenario depicted in Fig. 2. Nine sensors ob-

serve a moving object. We select F and Q to model near constant

velocity motion with random acceleration and H and R to model

noisy position measurements from the object. Location of sensor 1
is selected as the origin and the respective locations of the remaining

sensors are to be estimated.

We perform quad-term separable edge potential computations

using (27)-(28) in (18)–(21) and (17) for t = 20 time steps. We

compare the performance with that achieved by using the actual edge

potentials found by joint filtering as well as the dual-term approxi-

mation in [20]. These edge potential evaluations take place within

LBP message passing iterations given by (23)-(24). In particular,

we consider a particle based implementation strategy known as non-

parametric BP [26].The iterations are initiated with sets of samples

{θ
(l)
i }Ll=1s generated from local position priors p0,i(θi)s for i ∈ V .

Non-parametric BP approach represents the message from node j to

i by a sample set {θ̄(l)i }Lk=1 associated with the weights given by
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Fig. 3. Log normalised average error versus LBP iterations for the

joint, dual-term and the quad-term separable likelihoods.

ω̄
(l)
i ∝ ψ

t
ij(θ̄

(l)
i , θ

(l)
j ), θ

(l)
j ∼



ψj(θj)
∏

i′∈ne(j)\i

mi′j(θj)





where the node and edge potentials have been selected as the prior

densities and quad-term separable likelihoods in (22) (or, centralised

or dual-term likelihoods, for comparison).

We use 30 iterations of LBP on the pairwise graph G in Fig. 2.

First, we consider the accuracy of estimation in terms of the max-

imum localisation error in the network averaged over 200 Monte

Carlo simulations. In Fig. 3, we provide log-plots of this term over

iterations after normalisation with 1000m. All three edge poten-

tials result with a maximum of less than 10m error on the average

by iteration 30. Note that the quad-term approximation performs

on par with the baseline joint filtering term, both of which perform

slightly better than the dual-term approximation. The computation

time for both of the separable edge potentials are similar and aver-

age to 12.2s per edge per iteration whereas the joint filtering results

with an average of 28.3s. Therefore, the proposed approximation

provides significant savings in computational time for a negligible

loss in estimation accuracy, in this example.

6. CONCLUSIONS

We propose a node-wise separable likelihood for local parameter es-

timation in distributed state space models. The separable structure

enables us to evaluate this likelihood using local filtering operations

thereby scaling with the number of sensors whereas the actual like-

lihood requires joint multi-sensor filtering which often has a pro-

hibitive cost. We provide closed form expressions and bounds for

the KLD of the proposed approximation with respect to the actual

likelihood and show that the approximation quality improves as the

local filtering accuracy gets better. We leverage the node-wise sep-

arable likelihoods with pairwise Markov random fields and obtain a

message passing scheme for parameter estimation in distributed state

space models. We demonstrate the resulting distributed estimation

scheme on a sensor self-localisation example.
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