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Abstract

In this work, our focus is on the detection of manoeuvring small objects with radars. Such objects

induce low signal to noise ratio (SNR) reflections in the received signal. We consider both co-located

and separated transmitter/receiver pairs, i.e., mono-static and bi-static configurations, respectively, as

well as multi-static settings involving both types. We propose a detection approach which is capable

of coherently integrating these reflections within a coherent processing interval (CPI) in all these

configurations and continuing integration for an arbitrarily long time across consecutive CPIs. We

estimate the complex value of the reflection coefficient for integration while simultaneously estimating

the object trajectory. Compounded with this is the estimation of the unknown time reference shift of

the separated transmitters necessary for coherent processing. Detection is made by using the resulting

integration value in a Neyman-Pearson test against a constant false alarm rate threshold. We demonstrate

the efficacy of our approach in a simulation example with a very low SNR object which cannot be

detected with conventional techniques.

Index Terms

radar detection, coherent integration, non-coherent integration, bi-static radar, multi-static radar,

target tracking, synchronisation.

I. INTRODUCTION

Detection of manoeuvring and small objects with radars is a challenging task [1], and, a

highly desirable capability in surveillance applications [2]. Radars emit modulated pulses toward
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a surveillance region, and, collect reflected versions of the transmitted waveforms from objects in

this area. Small objects induce low signal-to-noise ratio (SNR) signals at the radar receiver. The

decision on object presence is made by testing the hypothesis that the received signal contains

reflections against the noise only signal hypothesis after the front-end input is filtered with a

system response matching the probing waveform, which is known as the matched filter (MF) [3].

In order to detect low SNR objects, multiples of such pulse returns (i.e., multiple measure-

ments) need to be considered as each reflection is at a level similar to the noise background.

The sufficient statistics of multiple pulse returns are found by summing the associated reflection

coefficients across them, which is referred to as pulse integration [3, Chp.8]. This process is

applied on the sampled outputs of the MF stage. These samples correspond to, in effect, resolution

bins in an equally divided range-bearing and doppler space. Conventional integration methods

such as coherent and non-coherent integration integrate pulse returns in the same range-bearing

and doppler bins across time. When objects manoeuvre, however, these reflections follow a

trajectory across these bins, and, these methods fail to collect evidence on object existence for

a long time due to not taking into account this trajectory. On the other hand, longer integration

time provides higher probability of detection for a given false alarm rate, in principle.

One possible solution to long time integration in the case of object manoeuvres is to design

filters with long time responses matching multiple pulse returns along a selection of possible

trajectories [4]. The number of filters required in this approach easily becomes impractically

excessive with increasing integration time, however. An alternative approach is to employ a

dynamic programming perspective and use a regular probing pulse MF to integrate its outputs

along a trajectory estimated simultaneously which corresponds to, in a sense, online synthesis

of long time MFs adaptively. Trajectory estimation using outputs of a pulse MF is often referred

to as track-before-detect (see, for example, [5], [6]). The sample that corresponds to the true

object kinematic is a complex value that is a sum of the reflection coefficient and background

noise [7] 1. Most track-before-detect algorithms use averaged models that specify statistics of

the modulus of the MF output. The detection performance can be improved by also taking into

account the phase of the data samples [8].

1In general, the received reflection is characterised by a complex reflection coefficient and the reflector’s kinematics such as

location (equivalently the time of flight) and velocity (equivalently doppler shift) [7, Chp.2]. Sampled MF outputs are used to

form a radar data-cube that maps range-bearing and doppler bins to a complex MF output sample [3]. We refer to the sample

in this cube that corresponds to the true object kinematic.
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The best achievable detection performance is obtained by coherent processing [3], in which one

needs to estimate the complex reflection coefficient from the complex values of the MF outputs

the latter of which are processed by the aforementioned algorithms. This corresponds to using

a non-averaged model in which the reflection coefficient is a random variable that remains the

same during what is known as a coherent processing interval (CPI), and, is generated randomly

for consecutive CPIs [7]. This is challenging partly because estimation of this quantity with a

reasonable accuracy requires more samples than one can collect at the pulse-width sampling

rate in a coherent processing interval (CPI) [9]. For example, [10] performs coherent processing

and integration within a CPI, however, with a very high sampling rate that yields an extensive

number of samples in a pulse interval.

In [11], we demonstrated that this can be remedied using a phased array receiver structure.

In particular, we assume a uniform linear array (ULA) receiver and sample its elements with

a pulse-width period. Then, we use these complex measurements for estimating the complex

reflection coefficients in consecutive CPIs. Simultaneously, we perform trajectory estimation

with an arbitrary target motion model, and, use the estimated coefficients in pulse integration

which can be continued for an arbitrarily long time. The integrated value is then tested against a

constant false alarm rate (CFAR) threshold for declaring the existence or otherwise of an object

in a Neyman-Pearson sense. The coherency of processing is ensured by the knowledge of the

transmitter characteristics and synchronisation with the receiver so that there is no unknown phase

shift in the received reflections. In [12], we extend this approach for separated transmitter/receiver

pairs, i.e., bi-static channels, with an unknown time reference shift. In particular, we recover the

synchronisation term by diverting simultaneous beams towards the tested point of detection

and the remote transmitter thereby relaxing the commonly used assumption that the remote

transmitters and the local receiver are synchronised (see, e.g., [13], [14]).

In this work, we provide a complete exposition of our long time integration and trajectory

estimation approach in mono-static and bi-static configurations, and, introduce a novel solution

for the multi-static case in which both mono-static and bi-static channels exist. In particular,

we consider the system structure in Fig. 1 where there are multiple transmitters using mutually

orthogonal waveforms. The receiver is a ULA and has the full knowledge of the transmission

characteristics except the time reference shift of the separately located transmitters. The front-

end signals at the receive elements are the superposition of noise, signals from direct channels,

and, reflections from objects.
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Fig. 1: Problem scenario: M transmitters and a ULA receiver are to detect a small object located

at [x, y]T with velocity [ẋ, ẏ]T inducing a low SNR signal onto the receiver elements.

We use a Markov state-space model for the object state which consists of location and velocity

variables. The measurement model of this state space model involves the radar ambiguity function

parametrised on the aforementioned reflection coefficients. These coefficients are estimated using

a maximum likelihood approach within Bayesian filtering recursions for state trajectory estimate.

For synchronisation, we employ techniques for parameter estimation in state space models, and,

in effect, use the object trajectory estimated in the mono-static channel to find the respective time

reference shifts in the bi-static channels. This removes the constraint on the omni-directionality

of transmitters for facilitating coherent processing in the bi-static only case.

The proposed algorithm enables us to collect the entire evidence of object existence at the

receiver by i) performing coherent integration in both mono-static and bi-static channels within

a CPI, ii) non-coherently integrating across different (non-coherent) channels, e.g., local mono-

static and remote bi-static channels, and, iii) continuing integration for an arbitrarily long interval

that contains many CPIs. As a result, this approach enables us to detect manoeuvring and low

SNR objects which cannot be detected using other techniques.

This article is organised as follows: Section II gives details of the problem scenario and

introduces the mathematical statement of the problem. In Section III, we discuss trajectory

estimation with the array measurements and derive the maximum-likelihood estimator for the

complex reflection coefficients given the estimated trajectory. Then, we introduce synchronisation

approaches for bi-static only and multi-static configurations. The proposed detection algorithm

is demonstrated in Section VI through an example scenario in which a manoeuvring very low

SNR object is to be detected. Finally, we conclude in Section VII.
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Fig. 2: Geometry of the problem scenario: One transmitter co-located with a ULA receiver

and another placed in a separate location on the 2D Cartesian plane. Both polar and Cartesian

coordinate variables are depicted. Each transmitter emits N pulses in a CPI. The waveforms

used are orthogonal.

II. PROBLEM STATEMENT

This section gives the details of the problem scenario described in Fig 1. We consider a

ULA receiver and introduce notation for M = 2 transmitters for the sake of simplicity, but, the

discussion can easily be extended for M > 2 transmitters. In this setting, one of the transmitters

is co-located with the receiver forming a mono-static pair. The second transmitter is located

elsewhere and forms a bi-static pair with the receiver.

The geometry of the problem is illustrated in Fig 2. Here, each transmitter (depicted by a

triangle) is assumed to be omni-directional and emits N consecutive pulses separated by a time

length of T . This quantity is known as the pulse repetition interval (PRI). These pulses are

reflected from an object (black circle). We assume that the reflectivity of the object remains

coherent (i.e., unchanged) during the collection of these N reflections. Such a time interval is

known as a CPI.

The ULA receiver (red dots) is comprised of L elements spaced with d distance. Each element

collects reflected versions of the transmitted waveforms emitted by both the co-located and the

separated transmitter. The corresponding channels are illustrated in Fig. 2 by coloured lines. In

particular, there is i) a local (mono-static) channel (red line), ii) a remote (bi-static) channel

(green line), and, iii) a direct channel from the remote transmitter (green dashed line).

A. Spatio-temporal signal model

We consider the narrowband signal models for the aforementioned three channels [15] at the

ULA receiver. Let us denote the object kinematic state by X = [x, y, ẋ, ẏ]T , where [x, y]T is
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the location, [ẋ, ẏ]T is the velocity, and (·)T denotes the transpose of its input argument. The

corresponding signal can be expressed as a combination of a spatial steering vector ss(θ) and a

temporal vector st(r, ωd), where θ, r, and ωd denote the angle of arrival, the time of flight, and

the doppler angular frequency, respectively.

The angle of arrival values for these channels at the receiver are given by

θ1 = arctan

(
y

x

)
and θt = arctan

(
yt
xt

)
, (1)

where θ1 is the angle of arrival for the local and the remote channels and θt is the angle of

arrival for the direct channel.

The values for time of flight are found as

r1 =
2R1

c
, r2 =

R1 +R2

c
, and rt =

Rt

c
, (2)

where r1, r2, and rt are the time of flight for the local, the remote, and the direct channels, respec-

tively and c is the speed of light in m/s. Here, R1 =
√
x2 + y2, R2 =

√
(x− xt)2 + (y − yt)2,

and Rt =
√
x2
t + y2

t are the range components of the reflector in the local polar coordinate

systems shown in Fig 2.

The doppler angular frequencies of the local and the remote channels are found as

ωd1 =
4π

λc

(
ẋ cos(θ1) + ẏ sin(θ1)

)
, and

ωd2 =
2π

λc

(
ẋ(cos(θ1) + cos(θ2)) + ẏ(sin(θ1) + sin(θ2))

)
,

(3)

respectively. Here, λc is the carrier wavelength given by λc = c/fc and θ2 is the angle in Fig 2

given by θ2 = arctan
(
(y − yt)/(x− xt)

)
.

The temporal vector st (r, ωd) with N pulses is found as

st (r, ωd) = exp (−jωcr)×
[
1, exp (jωdT ) , . . . , exp

(
jωd(N − 1)T

) ]T
, (4)

where T is the pulse repetition interval (PRI) and ωc is the carrier angular frequency given by

ωc = 2πfc.

The spatial steering vector ss(θ) is characterised by the geometry of the ULA receiver with

L elements and is found as

ss(θ) =
[
1, exp

(
−jωc

d

c
sin θ

)
, . . . , exp

(
−jωc(L− 1)

d

c
sin θ

)]T
, (5)

where d = λc/2 is the internal element spacing in the ULA receiver.
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After substituting the values for the angel of arrival, the time of flight, and the doppler angular

frequency in (4) and (5), the forward signal models are given by combining the spatial steering

and the temporal vectors i.e.,

sz(θ1, r1, ωd1) = ss(θ1)⊗ st (r1, ωd1) and

sy(θ1, r2 + ∆t, ωd2) = ss(θ1)⊗ st (r2 + ∆t, ωd2) ,
(6)

where sz(·) ∈ CLN×1 and sy(·) ∈ CLN×1 represent the noise free signals received in the local and

the remote channels, respectively, ∆t denotes the unknown time shift (i.e., the synchronisation

term of the remote channel at the receiver), and ⊗ denotes the Kronecker product operator.

Similarly, the forward signal model in the direct channel is expressed as

sd(θt, rt + ∆t) = ss(θt)⊗ st (rt + ∆t, 0) . (7)

Detection is made by searching the reflections in sampled versions of the received signals after

a matched filter. In particular, we use a bank of two orthogonal matched filters which match the

probing waveforms emitted by two transmitters (which, in general, would be M filters with M

transmitters [16, Chp.3]). This filter output is sampled in fast time which uniformly divides range

space into range bins with ∆r. Bearing space is discretised into bearing bins of ∆θ and doppler

space is also sampled into dopper bins of ∆ωd [3, Chp.7]. As a result, the data vectors in a CPI

under the hypothesis that an object exists at i = [i1, i2, i3]th and j = [j1, j2, j3]th bearing-range

and doppler bins with unknown complex reflection coefficients are given by

Z(i) = αzsz(i1∆θ, i2∆r, i3∆ωd) + nz(i1∆θ, i2∆r, i3∆ωd) and

Y (j) = αysy(j1∆θ, j2∆r + ∆t, j3∆ωd) + ny(j1∆θ, j2∆r, j3∆ωd),
(8)

where Z(·) and Y (·) are the measurements received in the local and the remote channels,

respectively, and, αz and αy are the unknown complex reflection coefficients for these channels.

Here, nz(·) and ny(·) represent independent complex Gaussian variables with all zero mean and

covariances of Σz and Σy, respectively2.

2Properties of general complex Gaussian covariances are explained in [17, Chp.7].
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Now, we evaluate the sufficient statistics in the remote channel by time shifting the mea-

surement Y (j) in (8). An amount of time shifting Y (j) is specified by the object kinematic

parameters X . This version is found as

Y(j) = Y (j)� sy(−θ1,−r2,−ωd2)

= αysy(0,∆t, 0) + ny(j)

= αysy(∆t) + ny(j),

(9)

where sy(·) is the noise free signal model given in (6), j = [j1, j2, j3] corresponds to the bearing-

range and doppler bin associated with (θ1, r2, ωd2) of X , and � denotes the Hadamard product

operator. As a result, the data vectors to be tested for detection at the kth CPI are given by

combining the local and the remote channels, i.e.,

Zk(i)
Yk(j)

 =



αz,ksz,k(i1∆θ, i2∆r, i3∆ωd)

αy,ksy,k(∆t)

+

nz,k(i1∆θ, i2∆r, i3∆ωd)

ny,k(j1∆θ, j2∆r, j3∆ωd)

, H1 holds,

nz,k(i1∆θ, i2∆r, i3∆ωd)

ny,k(j1∆θ, j2∆r, j3∆ωd)

 , H0 holds,

(10)

where sy,k(∆t) is given in (9), H1 is the hypothesis that an object is located at ith and jth bins,

and H0 is the noise only signal hypothesis.

B. Problem definition

Our goal is to detect a low SNR object moving along the trajectory X1:K . The decision on

the presence of an object is made by using a Neyman-Pearson test [18, Chp.3]. The inputs to

this test are the set of the complex measurement vectors {Zk(ik),Yk(jk)}k=1:K in (10), where

ik = [i1,k, i2,k, i3,k] and jk = [j1,k, j2,k, j3,k] correspond to the bearing-range and doppler bins

associated with (θk, rk, ωdk) of the object sate Xk.

Given the object state X1:K , the likelihood ratio test is defined as

L(Z1:K(i1:K),Y1:K(j1:K)|X1:K , αz,1:K , αy,1:K ,∆t) =

K∏
k=1

l(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t,H = H1)

l(Zk(ik),Yk(jk)|H = H0)

H1

≷
H0

TK ,
(11)
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where the likelihood ratio L(.) is used for the detection test at the receiver, the likelihood

l(.|H = H1) represents the object existence hypothesis H = H1, the likelihood l(.|H = H0) is

for the noise only signal hypothesis H = H0, and TK is the detection threshold for K steps of

integration.

The numerator at the kth CPI in (11) –considering (10) – is given by

l(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t,H = H1) =

(
1

π2LN det(Σz) det(Σy)

)
× exp

(
−
(
Zk(ik)− αz,ksz,k(Xk)

)H
Σ−1
z

(
Zk(ik)− αz,ksz,k(Xk)

))
× exp

(
−
(
Yk(jk)− αy,ksy,k(∆t)

)H
Σ−1
y

(
Yk(jk)− αy,ksy,k(∆t)

))
,

(12)

and the denominator is also found as

l(Zk(ik),Yk(jk)|H0) =

(
1

π2LN det(Σz) det(Σy)

)
× exp

(
−Zk(ik)HΣ−1

z Zk(ik)− Yk(jk)HΣ−1
y Yk(jk)

)
,

(13)

where Zk(ik) ∈ CLN×1 and Yk(jk) ∈ CLN×1 are the measurements in (10), LN is the length of

the data vector, and (.)H denotes the Hermitian transpose of its input argument.

An explicit expression for the instantaneous likelihood ratio at the kth CPI in (11) after

substituting (12) and (13) is hence obtained by

L(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t)

= exp
(
−
(
Zk(ik)− αz,ksk(Xk)

)H
Σ−1
z

(
Zk(ik)− αz,ksz,k(Xk)

))
× exp

(
−
(
Yk(jk)− αy,ksy,k(∆t)

)H
Σ−1
y

(
Yk(jk)− αy,ksy,k(∆t)

))
× exp

(
Zk(ik)HΣ−1

z Zk(ik) + Yk(jk)HΣ−1
y Yk(jk)

)
.

(14)

Now, the problem we consider involves simultaneous estimation of the object state X1:K

and evaluation the likelihood ratio in (11) by evaluating (12)–(14) for k = 1, 2, · · · , K. This

also requires estimation of the complex reflection coefficients and ∆t. Estimation of all these

unknown parameters, and, specification of the detection threshold for a constant false alarm rate

(CFAR) are explained in the rest of this article.
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III. SIMULTANEOUS TRACKING AND REFLECTION COEFFICIENT ESTIMATION

A. Trajectory estimation using coherent returns

In this section, we consider estimation of the object trajectory X1:k using coherent returns

during a CPI. For this purpose, we use Bayesian recursive filtering based on a Markov state

space model. This filtering is given by the prediction and the update recursion:

p(Xk|Z1:k−1,Y1:k−1) =

∫
p(Xk|Xk−1)p(Xk−1|Z1:k−1,Y1:k−1)dXk−1 (15)

p(Xk|Z1:k,Y1:k) ∝ p(Zk,Yk|Xk, αz,k, αy,k,∆t)p(Xk|Z1:k−1,Y1:k−1) (16)

where p(Xk|Z1:k,Y1:k) is the posterior density function of the object state Xk, p(Xk|Xk−1) is the

Markov transition density of Xk, and p(Zk,Yk|Xk, αz,k, αy,k,∆t) is the measurement likelihood

function.

The measurements are assumed to be independent and identically distributed (i.i.d). The

measurement likelihood at the kth CPI in (16) can be factorised by

p(Zk,Yk|Xk, αz,k, αy,k,∆t)

= l(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t,H = H1)
∏

ik 6∈i′ ,jk 6∈j′
l(Zk(i

′
),Yk(j

′
)|H = H0)

=
l(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t,H = H1)

l(Zk(ik),Yk(ik)|H = H0)
l(Zk,Yk|H = H0)

∝ L(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t),

(17)

where l(·|H = H1) is the likelihood under the object existence hypothesis H = H1 and l(·|H =

H0) is the likelihood under the noise only signal hypothesis H = H0. Note that the measurement

likelihood in (17) becomes proportional to the instantaneous likelihood ratio L(·) in (14). As a

result, the prediction stage in (15) and the update recursion in (16) are rewritten by using the

likelihood ratio in (14) i.e.,

p(Xk|Z1:k−1(i1:k−1),Y1:k−1(j1:k−1)) = (18)∫
p(Xk|Xk−1)p(Xk−1|Z1:k−1(i1:k−1),Y1:k−1(j1:k−1))dXk−1

p(Xk|Z1:k(i1:k),Y1:k(j1:k)) ∝ (19)

L(Zk(ik),Yk(jk)|Xk, αz,k, αy,k,∆t)p(Xk|Z1:k−1(i1:k−1),Y1:k−1(j1:k−1)),

where this filtering computes the posterior density function at the object state Xk in accordance

with ithk range-bearing and doppler bin for the local channel and j th
k range-bearing and doppler

bin for the remote channel at the kth CPI.
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The Markov transition density is selected as

p(Xk|Xk−1) = N (Xk;FXk−1,Σ)

Xk = FXk−1 + bk−1, F =


1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

 ,
(20)

where Xk = [xk, yk, ẋk, ẏk]
T is the object kinematic parameters, bk−1 is the process noise

(modelling unknown manoeuvres), which is zero-mean Gaussian with a known covariance Σ, F

is the object dynamic matrix, and ∆ is the time interval between two consecutive CPIs.

In the proposed algorithm, a sequential Monte Carlo (SMC) realisation of Bayesian recursive

filtering known as the particle filter is used [19]. In particular, we use a bootstrap filtering

approach for estimating the object trajectory. Given a set of particles
{
Xp
k−1, ζ

p
k−1

}P
p=1

as the

posterior density at k−1 state in (19), we obtain P particles
{
Xp
k , ζ

p
k−1

}P
p=1

with Xp
k ∼ p(·|Xp

k−1)

sampled from the Markov transition (20) realising the prediction stage in (18).

The posterior density is represented by Xp
k with a weight ζpk . For the update recursion of the

object state Xp
k , the corresponding weight ζpk−1 is updated by the likelihood ratio at the kth CPI

in (14), i.e.,

ζpk =
ζ̃pk∑P
p=1 ζ̃

p
k

,

ζ̃pk ∝ ζpk−1L(Zk(ipk),Yk(j
p
k)|X

p
k , α

p
z,k, α

p
y,k,∆t),

(21)

where ζpk is normalised weight and ζ̃pk is its un-normalised weight.

After normalising the weights in (21), we test degeneracy of the weighted particles. The

degeneracy test is performed by finding the number of effective particles given by

Neff =
1∑P

p=1

(
ζpk
)2 , (22)

and, testing the degeneracy using Neff compared to a threshold B. When Neff < B, we perform

re-sampling (see, e.g., [19]).

Given the set of
{
Xp
k , ζ

p
k

}P
p=1

after the update recursion in (21)–(22), the object state Xk at

the kth CPI is estimated by

X̂k =
P∑
p=1

ζpkX
p
k , (23)
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where X̂k is the estimated object state Xk. Note that the estimated object state X̂k in (23) requires

estimation of the unknown complex reflection coefficients αpz,k and αpy,k, which is explained in

the next section.

B. Maximum Likelihood estimation of the reflection coefficients

Let us consider estimation of the complex reflection coefficients for evaluating the likelihood

ratio in (21). It is assumed that the complex reflection coefficients associated with the local and

the remote channels are constant in a CPI, but, these are random variables across consecutive

CPIs. We use the maximum likelihood (ML) estimation approach for estimating the reflection

coefficients.

Given the object state Xp
k in (21), the corresponding reflection coefficients at the kth CPI are

estimated by solving

(α̂pz,k, α̂
p
y,k) = arg max

αpz,k,α
p
y,k

log l
(
Zk(ipk),Yk(j

p
k)|X

p
k , α

p
z,k, α

p
y,k,∆t,H = H1), (24)

where ipk and jpk correspond to the bearing-range and doppler bins associated with (θpk, r
p
k, ω

p
dk

)

of Xp
k , log l(·|H = H1) is the natural logarithm of the likelihood under the object existence

hypothesis in (12), and, α̂pz,k and α̂py,k denote the ML estimate of αpz,k and αpy,k.

For solving (24), after taking the natural logarithm of the likelihood in (12), we obtain

log l
(
Zk(ipk),Yk(j

p
k)|X

p
k , α

p
z,k, α

p
y,k,∆t,H = H1) = −2LN log (π)

− log
(
det(Σz)

)
− log

(
det(Σy)

)
−Zk(ipk)

HΣ−1
z Zk(i

p
k)− Yk(j

p
k)
HΣ−1

y Yk(j
p
k)

+ 2 Re
(
α
∗p
z,ksz,k(X

p
k)HΣ−1

z Zk(i
p
k)
)

+ 2 Re
(
α
∗p
y,ksy,k(∆t)

HΣ−1
y Yk(j

p
k)
)

− |αpz,k|
2sz,k(X

p
k)HΣ−1

z sz,k(X
p
k)− |αpy,k|

2sy,k(∆t)
HΣ−1

y sy,k(∆t),

(25)

where ∗ denotes the complex conjugate transpose, (·)H represents the Hermitian transpose of its

input argument, and Re(·) takes the real part of its complex argument.

Afterwards, we take the partial derivative of (25) with respect to αpz,k for the local channel

and αpy,k for the remote channel, and, obtain

∂ log l
(
Zk(ipk),Yk(j

p
k)|X

p
k , α

p
z,k, α

p
y,k,∆t,H = H1)

∂αpz,k
=

2sz,k(X
p
k)HΣ−1

z Zk(i
p
k)− 2αpz,ksz,k(X

p
k)HΣ−1

z sz,k(X
p
k), and,

∂ log l
(
Zk(ipk),Yk(j

p
k)|X

p
k , α

p
z,k, α

p
y,k,∆t,H = H1)

∂αpy,k
=

2sy,k(∆t)
HΣ−1

y Yk(j
p
k)− 2αpy,ksy,k(∆t)

HΣ−1
y sy,k(∆t).

(26)
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The ML solution in (24) is found by setting (26) to zero, i.e.,

α̂pz,k =
sz,k(X

p
k)HΣ−1

z Zk(i
p
k)

sz,k(X
p
k)HΣ−1

z sz,k(X
p
k)
, (27)

α̂py,k =
sy,k(∆t)

HΣ−1
y Yk(j

p
k)

sy,k(∆t)HΣ−1
y sy,k(∆t)

, (28)

where sz,k(·) ∈ CLN×1 is the noise free signal model given Xp
k in (6), sy,k(∆t) ∈ CLN×1 is

the noise free signal model associated with the unknown synchronisation term ∆t in (9), α̂pz,k is

the ML estimate of αpz,k associated with the local channel, and α̂py,k represents the ML estimate

of αpy,k associated with the remote channel. Note that αpy,k in (28) requires estimation of the

synchronisation term ∆t. We use two synchronisation approaches for estimating ∆t which are

explained in Section IV.

IV. SYNCHRONISATION OF THE DETECTOR WITH THE REMOTE TRANSMITTERS

A. Synchronisation term estimation for the bi-static only case

The first approach we consider for estimation of ∆t is to use the bi-static setting and we name

the bi-static synchronisation approach. This approach utilises a digital beam-forming with the

ULA structure to simultaneously divert beams to collect both the reflected signals in the remote

channel and the direct signals in the direct channel when the omni-directional transmitter is

used. Therefore, the received signals in the remote channel contain a unknown time shift ∆t

equivalent to ∆t received in the direct channel. Let us consider the data vector in the direct

channel using (7), i.e.,

D(l) =
√
Esd(l1∆θ, l2∆r + ∆t) + nd(l1∆θ, l2∆r), (29)

where lk = [l1, l2] corresponds to the bearing-range bin associated with the location (θt, rt) of

the separated transmitter, E is the known energy of the signal at the receiver front-end, and nd

is a complex Gaussian noise variable with zero mean and covariance Σd.

Now, we use a time shifted version of the direct channel for evaluating the sufficient statistics.

An amount of time shifting the measurement D(l) in (29) is specified by the location of the

separated transmitter. This version at the kth CPI is found as

Dk(l) = Dk(l)� sd(−θt,−rt)

=
√
Esd(0,∆t) + nd,k(l1, l2)

=
√
Esd(∆t) + nd,k(l1, l2),

(30)
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where Dk(·) is the shifted version of the measurement in the direct channel.

In order to find ∆t, we estimate sd(∆t) instead of ∆t, and, use the ML estimation approach

with the measurements from n = 1 to k in (30), i.e.,

ŝd(∆t) = arg max
sd(∆t)

log l(D1:k(l)|sd(∆t)), (31)

where l(D1:k(l)|sd(∆t)) is the measurement likelihood in the direct channel given by

l(D1:k(l)|sd(∆t)) =

(
1

πLN det(Σd)

)k
×

exp

 k∑
n=1

−(Dn(l)−
√
Esd(∆t))

HΣ−1
d (Dn(l)−

√
Esd(∆t))

 .

(32)

After taking partial derivative of log likelihood in (32) with respect to the sd(∆t), and, setting

to zero, the ML solution for the sd(∆t) is found as

ŝd(∆t) =
1

k

k∑
n=1

Dn(l)√
E
, (33)

where the synchronisation term ∆t in ŝd(∆t) is equivalent to ∆t in the remote channel, and,

we substitute ŝd(∆t) in (28) so as to estimate the complex reflection coefficient associated with

the remote channel.

B. Synchronisation term estimation for the multi-static case

Next, we consider estimation of ∆t using the multi-static setting, which is named as the multi-

static synchronisation approach. This approach uses the object trajectory estimated with the local

channel to find ∆t in the remote channel. This also enables us to remove the constraint on the

omni-directionality of the transmitter so that the receiver collects the direct signals emitted by

the separated transmitter described in Section IV-A.

Given the set of
{
Xp
k

}P
p=1

after the prediction stage in (18), we can define a marginal likelihood,

i.e.,

lM
(
Zk(ik),Yk(jk)|∆t

)
=

∫
l
(
Zk(ik),Yk(jk)|Xk, α̂z,k, α̂y,k,∆t

)
× p
(
Xk|Z1:k−1(i1:k−1),Y1:k−1(j1:k−1)

)
dXk

≈
P∑
p=1

l
(
Zk(ipk),Yk(j

p
k)|X

p
k , α̂

p
z,k, α̂

p
y,k,∆t

)
,

(34)
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where lM
(
Zk(ik),Yk(ik)|∆t

)
is the marginal likelihood function, and, α̂pz,k) and α̂py,k are the ML

estimate of the complex reflection coefficients given in (27) and (28), respectively.

The marginal likelihood in (34) can be factorised as

lM
(
Zk(ik),Yk(jk)|∆t

)
≈

P∑
p=1

l
(
Zk(ipk)|X

p
k , α̂

p
z,k

)
l
(
Yk(jpk)|X

p
k , α̂

p
y,k,∆t

)
∝

P∑
p=1

l
(
Yk(jpk)|X

p
k , α̂

p
y,k,∆t

)
∝

P∑
p=1

1

πLN det(Σy)
exp

(
− Yk(jpk)

HΣ−1
y Yk(j

p
k)
)

exp
( |sy,k(∆t)HΣ−1

y Yk(i
p
k)|2

sy,k(∆t)HΣ−1
y sy,k(∆t)

)

∝
P∑
p=1

exp
( |sy,k(∆t)HΣ−1

y Yk(i
p
k)|2

sy,k(∆t)HΣ−1
y sy,k(∆t)

)
,

(35)

Here, the marginal likelihood lM(.) in (35) only contains the synchronisation term ∆t.

For estimating ∆t, we use the ML estimator using the natural logarithm of the marginal

likelihood in (35). We also apply a window so that the estimation of ∆t is considered with

measurements from k−w to k where k indicates the kth CPI and w is the window length. Thus,

∆t is determined by solving

∆̂t = arg max
∆t

log
k∏

m=k−w

lM
(
Zm(im),Ym(im)|∆t

)
= arg max

∆t

k∑
m=k−w

P∑
p=1

( |sy,m(∆t)HΣ−1
y Ym(ipm)|2

sy,m(∆t)HΣ−1
y sy,m(∆t)

) (36)

where ∆t̂ is the ML estimate of ∆t.

In order to find the maximum value of ∆t in (36), we use a golden section search algorithm

in one dimension with the range of [∆tmin,∆tmax] (see, e.g., [20, Chp.10]). This algorithm is

described in Algorithm 1.

V. LONG TIME INTEGRATION FOR DETECTION

A. Long time integration

In this section, we consider long time integration based on the estimated parameters so as to

decide on the object existence hypothesis. In order to perform this proposed integration, we first

estimate X̂k by using SMC recursion and (23). We then substitute X̂k and ∆t̂ in (27) and (28)

in order to estimate α̂z,k and α̂y,k, respectively.
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Algorithm 1 Maximum likelihood estimation of ∆t via golden section search
1: Initialisation: Set

a = ∆tmin, b = ∆tmax

g =

√
5− 1

2
, and f(∆t) =

k∑
m=k−w

P∑
p=1

( |sy,m(∆t)HΣ−1
y Ym(jpm)|2

sy,m(∆t)HΣ−1
y sy,m(∆t)

)
2: Find the boundaries of ∆t using x1 = a+ (b− a)× (1− g) and x2 = a+ (b− a)× g

3: Compute f(x1) and f(x2)

4: while |x1 − x2| > Ac(i.e., accuracy of estimation) do

5: if f(x1)>f(x2) then

6: Set new boudaries b = x2 and x2 = x1

7: Find x1 = a+ (b− a)× (1− g)

8: Compute f(x1) and f(x2)

9: else

10: Set new boudaries a = x1 and x1 = x2

11: Find x2 = a+ (b− a)× (g)

12: Compute f(x1) and f(x2)

13: end if

14: end while

15: if f(x1)>f(x2) then

16: Estimate ∆t̂ = x1

17: else

18: Estimate ∆t̂ = x2

19: end if

Afterwards, we substitute X̂k, α̂z,k, α̂y,k, and ∆t̂ in the natural logarithm of the likelihood

ratio in (11) for k = 1, · · · , K. As a result, the detection is performed by

logL
(
Z1:K (̂i1:K),Y1:K(ĵ1:K)|X̂1:K , α̂z,1:K , α̂y,1:K ,∆t̂

)
=

K∑
k=1

(
|sz,k(X̂k)

HΣ−1
z Zk (̂ik)|2

sz,k(X̂k)HΣ−1
z sz,k(X̂k)

+
|sy,k(∆t̂)HΣ−1

y Yk(ĵk)|2

sy,k(∆t̂)HΣ−1
y sy,k(∆t̂)

)
H1

≷
H0

log TK ,
(37)

where log TK is the detection threshold for a given constant false alarm rate (CFAR) for K steps

of integration.
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Algorithm 2 The proposed simultaneous tracking and long time integration algorithm

1: Initialisation: generate a set of particles
{
Xp

0 , ζ
p
0

}P
p=1

2: for k = 1 to K (processing of K CPIs) do

3: Collect measurements and store in Zk and Yk given in (10)

4: for p = 1 to P (processing of SMC with P particles) do

5: Prediction: draw particle Xp
k ∼ p(Xp

k |X
p
k−1) using (20)

6: end for

7: Estiamte ∆t using (33) when the direct channel is available

8: Estiamte ∆t using (36) when the direct channel is not available

9: for p = 1 to P (processing of SMC with P particles) do

10: Update: compute ζ̃pk using substition of α̂pz,k, α̂py,k and ∆t̂ in (21)

11: end for

12: Normalise ζ̃pk
13: Degeneracy test in (22)

14: Estimate X̂k using (23)

15: Estimate α̂z,k and α̂y,k using substitution X̂k and ∆t̂ in (27) and (28)

16: Perform detection test using the proposed long time integration in (37)

17: end for

Note that the proposed integration approach in (37) performs coherent integration of L ×N

samples in a CPI at each channel and non-coherent integration across these channels as well

as consecutive CPIs, while taking into account the object trajectory. The overall process of the

proposed detection algorithm is described in Algorithm 2.

B. Constant false alarm rate threshold for detection test

Let us consider the detection threshold TK in (37) for a constant false alarm rate (CFAR).

This threshold can be calculated by using a function of a selected probability of false alarm

rate Pfa. For this purpose, we define a likelihood under the noise only signal hypothesis across

channels. This likelihood can be evaluated by the sum of the local and the remote channels for
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K steps of integration using (10) for Σz = σ2
zI and Σy = σ2

yI, i.e.,

p(ZK |H = H0) = CN (.; 0, KLN(σ2
z + σ2

y)),

E{ZK} = E{ZK + YK} = E{ZK}+ E{YK} = 0

E{Z2
K} = E{(ZK + YK)2} = E{Z2

K}+ 2E{ZK}E{YK}+ E{Y2
K}

= KLNσ2
z +KLNσ2

y,

(38)

where E{ZK} is the mean value, E{Z2
K} is the variance, and E{·} denotes the expectation of

its input argument. Hence, the likelihood p(Zk|H = H0) can be defined as

p(ZK |H0) =
1

πKLN(σ2
z + σ2

y)
exp

(
− |ZK |2

KLN(σ2
z + σ2

y)

)
. (39)

Next, we find the Pfa for the detection test by integrating p(ZK |H = H0) when ZK is over

the detection threshold TK . The Pfa can be defined as

Pfa =

∫ +∞

TK
p(ZK |H = H0)dZK =

1

π
√
KLN(σ2

z + σ2
y)
×

∫ +∞

TK√
KLN(σ2z+σ

2
y)

exp
(
−|t|2

)
dt =

1

2
√
πKLN(σ2

z + σ2
y)

erfc

 TK√
KLN(σ2

z + σ2
y)

 ,

(40)

where erfc(.) denotes the complementary error function (see, e.g, [3, Chp.6]). As a result, the

threshold TK given Pfa for K steps of integration using (40) is found as

TK =
√
KLN(σ2

z + σ2
y)erfc−1

(
2
√
πKLN(σ2

z + σ2
y)Pfa

)
, (41)

where erfc−1(.) is the inverse complementary error function. Given a probability of false alarm

rate Pfa, we can calculate TK using (41) for the likelihood ratio test in (37) for K steps of

integration.

VI. EXAMPLE

In this section, we demonstrate the proposed algorithm through an example and compare the

efficacy of this approach with conventional techniques. We consider a scenario in which a ULA

receiver co-located with a transmitter is at the origin of the 2D Cartesian plane, and, a separated

transmitter is located at [10m, 500m] (see. Fig. 2). In this setting, two transmitters emit N = 20

linear frequency modulated (i.e., chirp) waveforms in a CPI towards a surveillance region. In

this region, there is a low SNR object with an initial state X0 = [1000m, 1000m, 10m/s, 50m/s]
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TABLE I: Transmitted signal parameters

Parameter Value

Carrier frequency fc 10GHz

Bandwidth B 1MHz

Pulse repetition interval (PRI) T 100us

Coherent processing interval (CPI) ∆ 0.1s

Number of pulses during a CPI N 20

Number of elements in ULA L 20

Number of transmitters M 2

Distance (m)
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D
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(a) Typical scenario for an estimated trajectory
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(b) Root mean square error (RMSE)

Fig. 3: Example scenario: (a) A low SNR (-6dB) object moves the true trajectory (red line) across

range (red dashed lines) and bearing (blue dashed lines) bins. The proposed algorithm estimates

the object trajectory (blue line) for detection test. (b) RMSE (blue line) of this trajectory estimate

obtained in (a).

moving along an unknown trajectory according to the object dynamic model described in (20).

The ULA receiver collects measurements in accordance with the signal model in (10) in both

the local and the remote channels as well as the direct channel.

The parameters of the transmitted pulses used in this example are shown in Table I. Given

these parameters, we calculate the bearing resolution as ∆θ = 5.1◦ given by ∆θ = sin−1
(

0.8192
L

)
,

and, the range resolution as ∆r = 150m given by ∆r = c
2B

(see, e.g., [15]). Fig 3 illustrates

these corresponding resolutions, where the blue dashed lines and the red dashed lines indicate

the bearing resolutions and the range resolutions, respectively. The velocity resolution as ∆V =
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7.5m/s is also found by using ∆V = λc
2NT

(or, equivalently, the doppler resolution ∆ω =

4πfc
∆V
c
T as 0.314deg/s).

We use the proposed algorithm to test the object existence hypothesis in the receiver’s reso-

lution bins with P = 400 particles. These particles are initially selected as a 20 × 20 element

uniform grid within the bin under test. We perform long time integration using (37) spanning 10s

with a CPI interval of 0.1s. The complex reflection coefficient for each channel is also generated

using a complex Gaussian density leading to an expected SNR of −6dB. For synchronisation,

we deal with the synchronisation term ∆t in the remote channel as an unknown time shift and

randomly select ∆t in the range of 0 < ∆t < PRI so that each received pulse in the remote

channel contains the unknown time shift. We also generate the direct signals with additive noise

using (29) leading to an expected SNR of 0dB.

In this example, when an object is located in the bin under test, the particles generated by

the proposed algorithm converge to the underlying state of the object, and, the integrated value

using the proposed integration in (37) increases. When this value is over the detection threshold,

the proposed algorithm selects the object existence hypothesis. On the other hand, when the bin

under test contains no object, the particles start to diverge in space due to very small and similar

likelihood values. Fig. 3(a) illustrates a typical trajectory estimate using the proposed algorithm,

which indicates that the trajectory estimate (blue line) is reasonably close to the true trajectory

(red line). Fig. 3(b) shows the root mean square error (RMSE) of this trajectory estimate (blue

line) obtained in Fig. 3(a), where the RMSE provides a reasonably low value after only a few

steps (i.e., each step represents a CPI).

Now, we consider long time integration. For this purpose, we generate 100 measurement sets

using (10) with unknown object trajectories described in Fig 3 and perform long time integration

using two synchronisation approaches described in Section IV. We then evaluate the detection

performance based on these two approaches.

A. Long time integration using the bi-static synchronisation approach

First, we consider long time integration obtained by using the bi-static synchronisation ap-

proach explained in Section IV-A. Fig. 4(a) illustrates the average integrated value (blue solid

line) with ±1 standard deviation bounds (blue dotted line) using the proposed approach. It

can be seen that the integrated value using the proposed integration increases up to 42.7 at

t = 10s, which is relatively close to the best achievable value (red dashed line) 51.78 using
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(a) Long-time integration
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(b) Probability of detection

Fig. 4: Long-time integration obtained by using the bi-static synchronisation approach: (a) The

average proposed integration (blue line) using the proposed algorithm versus the integration with

ground truth (red dashed line) compared to the detection (CFAR) threshold (magenta line). The

conventional coherent (black line), the local channel (green line), and the remote channel (brown

line) integration fail to exceed the detection threshold. (b) The corresponding probabilities of

detection (Pd) with the same colour code found in (a).

the full knowledge of the ground truth values of the trajectory and the synchronisation term of

the remote channel. Here, we calculate the detection threshold as the CFAR threshold (magenta

line) using (41) for the given probability of false alarm rate Pfa = 10−8 and compare the

integrated values against this threshold. It is clearly observed that the integrated value using

the proposed approach exceeds the CFAR threshold at t = 9.1s, while both the local channel

(green solid line) and the remote channel (brown solid line) integration stay under the noise only

signal hypothesis. The conventional coherent integration (black solid line) also selects the noise

only signal hypothesis. Note that when the integration is used with an individual channel, this

integrated value fails to exceed the detection threshold due to the inferior tracking performance.

Now, we consider the probability of detection Pd as the function of the integrated value over

time, and, calculate this probability for the proposed algorithm empirically. Fig. 4(b) illustrates

the Pd (blue solid line) with ±1 standard deviation bounds (blue dotted lines) for the proposed

integration compared to the Pd (red dashed line) obtained by the best achievable integration. It

clearly appears that the Pd using the proposed integration increases over time and reaches 0.62

at t = 10s, whereas both Pds for the local (green solid line) and the remote integration (brown

solid line) reach almost zero and fail to detect the object in an overwhelming majority of the
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Fig. 5: Long-time integration using the multi-static synchronisation approach: (a) The average

integration value (orange line) using the multi-static synchronisation approach versus the

integration with ground truth (red dashed line) compared to the detection (CFAR) threshold

(magenta line). The conventional coherent (black line), and the local channel (green line), and the

remote channel (brown line) integration fail to exceed the CFAR threshold. (b) The corresponding

probabilities of detection (Pd) with the same colour code found in (a).

experiences.

B. Long time integration using the multi-static synchronisation approach

In the second case, we consider long time integration obtained by using the multi-static

synchronisation approach in (36) with the window length w = 5 explained in Section IV-B.

Fig 5(a) illustrates the average integrated value (orange solid line) with ±1 standard deviation

bounds (orange dotted line) using the proposed algorithm in comparison with the best achievable

values (red dashed line) obtained by using the full knowledge of the ground truth information

described in Fig. 4(a). It can be seen that the proposed integrated value (orange solid line)

reaches up to 44.41 at t = 10s, which is reasonably close to the best achievable integration

value 51.78. Next, we compare the integrated values to the same CFAR threshold (magenta line)

in Fig. 4(a). It is recognised that the proposed integrated value exceeds the CFAR threshold at

t = 8.4s, while both integrated values in the local channel (green line) and the remote channel

(brown line) select the noise only signal hypothesis. The integrated value using the conventional

coherent integration also decides on the noise only signal hypothesis.

For the probability of detection, Fig. 5(b) illustrates the Pd for the proposed integration (orange
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Fig. 6: Comparison between the bi-static synchronisation approach and the multi-static syn-

chronisation approach: (a) The average long time integration (orange solid line) using the multi-

static synchronisation approach versus the average integration (blue solid line) using the bi-static

synchronisation approach. (b) The corresponding Pds of these integrated values found in (a).
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Fig. 7: RMSE of the synchronised term estimated by using the bi-static synchronisation approach

(blue solid line) and using the multi-static synchronisation approach (orange solid line)

solid line) with ±1 standard deviation bounds (orange dotted line). It is clearly observed that

the Pd using the proposed integration reaches up to 0.70 at t = 10s, whereas both Pds for the

local and the remote channel integration reach almost zero and fail to detect the object.

C. Comparison

Let us compare the two aforementioned approaches. Fig 6(a) shows the average long time

integration (orange solid line) obtained by using the multi-static synchronisation approach and

the average long time integration (blue solid line) obtained by using the bi-static synchroni-

sation approach. It can be seen that the integrated value using the multi-static synchronisation
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approach reaches higher value 44.41 at t = 10s than the integrated value 42.7 using the bi-static

synchronisation approach. When the integrated values are compared to the detection threshold,

the integrated value (orange solid line) exceeds the CFAR threshold (magenta line) at t = 8.4s,

which is faster than the integrated value (blue solid line) at t = 9.1s. Fig 6(b) also illustrates

the corresponding probabilities of detection Pds using the same colour code in Fig 6(a). It

is clearly observed that the Pd for the integration (orange solid line) using the multi-static

synchronisation approach reaches 0.70 at t = 10s higher than the Pd (blue solid line) using the

bi-static synchronisation approach as 0.62.

Next, we compare these two approaches based on estimation of the synchronisation term ∆t.

For this purpose, we calculate the RMSE of the estimated ∆t given by

RMSE(∆t) =

√∑M
m (∆t̂m,k −∆t)

M
(42)

where ∆t indicates the true synchronisation term, ˆ∆tm,t is the mth estimate of ∆t at the kth

CPI and M = 100 is the total measurement sets.

Fig 7 illustrates the RMSEs of ∆t estimated by using these two approaches. It is clearly

recognised that the RMSE of ∆t using the multi-static synchronisation approach (orange line)

is much lower than when using the bi-static synchronisation approach (blue line).

The benefits of these approaches come with some additive cost of computations compared

to conventional integration methods. The computational cost of the bin under test for detection

using the proposed algorithm at the kth CPI requires P (N2
X + 2M(LN)2) multiplications and

P (1 + 2M(LN − 1)) additions for using the bi-static synchronisation approach, and, P (N2
X +

2NIM(LN)2) multiplications and P (1 + 2NIM(LN − 1)) additions for using the multi-static

synchronisation approach, while conventional coherent integration requires M multiplications

and M(LN − 1) additions. Here, NX denotes the dimensionality of the object state in (20) and

NI is the number of iterations for the golden selection search in Algorithm 1.

VII. CONCLUSION

In this work, we have proposed a detection approach, which can perform simultaneous tra-

jectory estimation and log time integration for detecting a manoeuvring and low SNR object

in mono-static, bi-static, and multi-static configurations. We demonstrate that this proposed

algorithm provides long time integration, which performs coherent integration of reflections

within a CPI in all these configurations together with non-coherent integration across the channels
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as well as consecutive CPSs. It is found that the proposed integrated value is close to the

best achievable integrated value using the ground truth values of the true trajectory and the

synchronisation term of the remote channel. For synchronisation, we present the bi-static and the

multi-static synchronisation approaches. The benefit of the multi-static synchronisation approach

enables us to remove the need for the omni-directionality of the transmitter when the bi-static

synchronisation approach is used. It is also found that the multi-static synchronisation approach

provides lower error value of estimating the synchronisation term than when using the bi-static

synchronisation approach. Future work includes further experimentation for the characterisation

of this detection approach under different SNR working conditions.
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